
Produced & edited by Ton Roosendaal and Carsten Wartmann

Playing with 3D
games technology

Blender is a fast, powerful and free 3D
creation suite. It’s the first of the 3D packages
to integrate a game engine and tools for
editing game-logic and creating interactive
animation.

The Blender GameKit has an extensive
section for people who are new to 3D, or new
to Blender. It shows in step-by-step tutorials
the fun of creating models, adding motion
to them, and how to turn them into simple
games. Experienced 3D artists will appreciate
the more complex game demos, the character
animation tutorials, and the advanced refer-
ence section.

About this book
The Blender Gamekit was produced by Not a
Number, the company that developed Blender
as a commercial product. Blender is now
continued as an Open Source project led by
Ton Roosendaal, the original Blender creator.
Carsten Wartmann is a 3D designer and
writer, renowned as the author of The Blender
Book and The Official Blender 2.0 Guide.

The CDROM contains 10 playable and editable Blender
game demos. It also contains the Blender Creator V2.24,
for all platforms: Windows (98/2000/ME/XP), Linux (i86),
FreeBSD (i386) and IRIX (6.5)

System specs: 450 Mhz processor, 64 MB memory,
OpenGL accelerated 3D card (Nvidia, Matrox, ATI, 3Dlabs)

Blender Gamekit

The official

Blender Gamekit
Interactive 3D for Artists

Produced & edited by Ton Roosendaal and Carsten Wartmann

IV V

BLENDER GAMEKIT (c) 2002 Stichting Blender Foundation

All rights reserved. Printed in the Netherlands. No part of this book covered by copyright may be
reproduced in any form or by any means -- graphic, electronic, or mechanical, including photocopying,
recording, taping, or storage in an electronic retrieval system -- without prior written permission of the
copyright owner.

Information in this book has been obtained by the Publisher from sources believed to be reliable. However,
because of the possibility of human or mechanical errors, the Publisher does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from use of such information.

“Blender” and its logo are trademarked by NaN Holding BV, the Netherlands.
Original copyright for text and images (c) 2001 NaN Holding BV.

Authors:
Michael Kauppi, Carsten Wartmann

Tutorials, game demos, CDROM content:
Joeri Kassenaar, Freid Lachnowicz, Reevan McKay,
Willem-Paul van Overbruggen, Randall Rickert, Carsten Wartmann

Editor:
Carsten Wartmann

Design and DTP:
Samo Korosec, froodee design, www.frodee.com

Production:
Ton Roosendaal

Published by:

Blender Foundation
Entrepotdok 42 t/o
1018 AD Amsterdam
the Netherlands

www.blender.org
www.blender3d.org

info@blender.org

Special thanks to the NaN Technologies crew:

Management:
Gil Agnew, Jan-Paul Buijs, Maarten Derks, Loran Kuijpers, Ton Roosendaal, Jan Wilmink

Software engineers:
Frank van Beek, Laurence Bourn, Njin-Zu Chen, Daniel Dunbar, Maarten Gribnau, Hans Lambermont, Martin
Strubel, Janco Verduin, Raymond de Vries,

Content developers:
Joeri Kassenaar, Reevan McKay, WP van Overbruggen, Randall Rickert, Carsten Wartmann,

Website, support & community:
Bart Veldhuizen, Willem Zwarthoed,

Marketing:
Elisa Karumo, Sian Lloyd-Scriven

System administrators:
Thomas Ryan, Marco Walraven

Administration and backoffice:
Maartje Koopman, Annemieke de Moor, Brigitte van Pelt

IV V

VI

Blender Gamekit Contents

Chapter 1. Quickstart 4
 1.1. Simple face mapping 4
 1.2. Using 2-D tools to map the face 9

Chapter 2. What is this book about 14

Chapter 3. Introduction to 3-D and the Game Engine 15
 3.1. Purpose of This Chapter 15
 3.2. General Introduction to 3-D 15
 3.2.2. 3-D, the third dimension 18
 3.2.3. 3-D computer graphics 21
 3.3. Game Engines and Aspects of a Good Game 31
 3.3.1. What is a game engine? 31
 3.3.2. Blender’s game engine -- Click and drag game creation 31
 3.3.3. “True” and “fake” 3-D game engines 32
 3.3.4. Good games 32
 3.4. Conclusion 33

Chapter 4. Blender Basics 34
 4.1. Keys and Interface conventions 34
 4.2. The Mouse 35
 4.3. Loading and saving 36
 4.4. Windows 38
 4.5. The Buttons 39
 4.6. Windowtypes 41
 4.7. Screens 44
 4.8. Scenes 44
 4.9. Setting up your personal environment 44
 4.10. Navigating in 3D 45
 4.10.1. Using the keyboard to change your view 45
 4.11. Selecting of Objects 46
 4.12. Copying and linking 47
 4.13. Manipulating Objects 48

Chapter 5. Modeling an environment 55

Chapter 6. Appending an object from an other scene 58

Chapter 7. Start your (Game) Engines! 60

Chapter 8. Interactivity 62

VIII IX

Chapter 9. Camera control 65

Chapter 10. Real-time Light 66

Chapter 12. Refining the scene 69

Chapter 13. Adding Sound to our scene 71

Chapter 15. Tube Cleaner, a simple shooting game 76
 15.1. Loading the models 77
 15.2. Controls for the base and cannon 78
 15.2.1. Upwards Movement 79
 15.3. Shooting 81
 15.4. More control for the gun 83
 15.5. An enemy to shoot at 85

Chapter 16. Low poly modeling by W.P. van Overbruggen 87
 16.1. Loading an image for reference 87
 16.2. Using the reference image. 89
 16.3. Outlining the Wheels 91
 16.4. Loading the front image 92
 16.5. A quick break 95
 16.6. Closing up the holes 97
 16.7. Flip it 99
 16.8. Finishing things off 105

Chapter 17. Super-G 106
 17.1. Adding objects to the level 106
 17.2. Object placing with Python 108

Chapter 18. Power Boats 111
 18.1. Engine control 112
 18.2. Cockpit instruments 114

Chapter 19. BallerCoaster by Martin Strubel 117
 19.1. Assembling a track 117
 19.2. Game Logic 119
 19.3. Making track elements 120
 19.4. The nature behind BallerCoaster 122

Chapter 20. Squish the Bunny 125
 20.1. Introduction 126
 20.2. Getting Started 126

VIII IX

 20.3. A Trail of Smoke 127
 20.4. Building a Puff of Smoke 127
 20.5. Adding game logic to the smoke 130
 20.6. Animating the Smoke 133

Chapter 21. Flying Buddha Memory Game 140
 21.1. Accessing game objects 141
 21.1.1. LogicBricks 141
 21.1.2. Shuffle Python script 142

Chapter 22. Game Character Animation using Armatures 144
 22.1. Preparing the Mesh 144
 22.2. Working with Bones 145
 22.3. Creating Hierarchy and Setting Rest Positions 146
 22.3.1. Naming Bones 146
 22.3.2. Parenting Bones 147
 22.3.3. Basic Layout 147
 22.3.4. Coordinate System Conventions 148
 22.4. Establishing Mesh Deformation Vertex Groups 149
 22.4.1. Creating Groups 149
 22.4.2. Attaching the Mesh to the Armature 150
 22.4.3. Testing the Skinning 150
 22.4.4. PoseMode 150
 22.6. Animation 154
 22.6.1. Multiple Actions and Fake Users 154
 22.6.2. Creating an Idle Cycle 155
 22.6.3. Creating a Walk Cycle 158
 22.7. Game Logic 162

Chapter 23. Blenderball 164
 23.1. Customize the Blenderball image puzzle 165
 23.2. Changing the levels of the Blenderball game 168

Chapter 24. Blender Windows and Buttons 174
 24.1. The 3DWindow 174
 24.1.1. 3DHeader 175
 24.1.2. The Mouse 178
 24.1.3. NumPad 180
 24.2. IpoWindow 181
 24.2.1. IpoHeader 182
 24.2.2. IpoWindow 184
 24.2.3. The Mouse 185
 24.3. EditButtons 186
 24.3.1. EditButtons, Mesh 188

X XI

 24.3.2. EditButtons, Armatures 194
 24.3.3. EditButtons, Camera 194
 24.4. EditMode 195
 24.5. WorldButtons 196
 24.6. SoundWindow 197

Chapter 25. Real-time Materials 198
 25.1. Vertex Paint 198
 25.2. TexturePaint 199
 25.3. The UV Editor 200
 25.3.1. Mapping UV Textures 200
 25.3.2. The ImageWindow 201
 25.3.3. The Paint/FaceButtons 202
 25.3.4. Avaible file formats 204
 25.3.5. Handling of resources 205
 25.4. Bitmap text in the game engine 206

Chapter 26. Blenders game engine 207
 26.1. Options for the game engine 207
 26.2. Options in the InfoWindow 208
 26.3. Command line options for the game engine 208
 26.4. The RealtimeButtons 210
 26.5. Properties 213
 26.6. Settings in the MaterialButtons 214
 26.6.1. Specularity settings for the game engine 215
 26.7. Lamps in the game engine 216
 26.8. The Blender laws of physics 217
 26.9. Expressions 218
 26.10. SoundButtons 219
 26.11. Performance and design issues 221

Chapter 27. Game LogicBricks 222
 27.1. Sensors 222
 27.1.1. Always Sensor 222
 27.1.2. Keyboard Sensor 223
 27.1.3. Mouse Sensor 224
 27.1.4. Touch Sensor 225
 27.1.5. Collision Sensor 225
 27.1.6. Near Sensor 227
 27.1.7. Radar Sensor 227
 27.1.8. Property Sensor 228
 27.1.9. Random Sensor 230
 27.1.10. Ray Sensor 230
 27.1.11. Message Sensor 231

X XI

 27.2. Controllers 232
 27.2.1. AND Controller 232
 27.2.2. OR Controller 232
 27.2.3. Expression Controller 232
 27.2.4. Python Controller 233
 27.3. Actuators 233
 27.3.1. Action Actuator 234
 27.3.2. Motion Actuator 234
 27.3.3. Constraint Actuator 236
 27.3.4. Ipo Actuator 237
 27.3.5. Camera Actuator 239
 27.3.6. Sound Actuator 240
 27.3.7. Property Actuator 241
 27.3.8. Edit Object Actuator 241
 27.3.9. Scene Actuator 244
 27.3.10. Random Actuator 246
 27.3.11. Message Actuator 249

Chapter 28. Python 250
 28.1. The TextWindow 250
 28.2. Python for games 251
 28.2.1. Basic gamePython 252
 28.3. Game Python Documentation per module 253
 28.3.1. GameLogic Module 253
 28.3.2. Rasterizer Module 254
 28.3.3. GameKeys Module 254
 28.4. Standard methods for LogicBricks 255
 28.4.1. Standard methods for Sensors 255
 28.4.2. Standard methods for Controllers 256
 28.4.3. Standard methods for GameObjects 257

Chapter 29. Appendix 258
 29.1. Blender Installation 258
 29.2. Graphics card compatibility by Daniel Dunbar 259
 29.2.1. Upgrading your graphics drivers 259
 29.2.2. Determining your graphics chipset 260
 29.2.3. Display dialogs in Windows concerning the graphics card 262
 29.2.4. Graphics Compatibility Test Results 263
 29.3. Where to get the latest version of Blender 264
 29.4. Support and Website Community 264

Glossary A-Z 266
Index 272

XII XIII

XII XIII

 I

13

I

14 What is this book about :: chapter 2

 I

13

I

14 What is this book about :: chapter 2

Chapter 2. What is this book about
 Blender offers you a new and unique way to explore interactive 3-D graphics.
This book will guide you through many aspects of making your own games and
interactive 3-D graphics with Blender.

 You can have fun with the ready made games on the CD instantly, but changing
them or creating your own game is also great fun.

 Blender is a fully integrated 3-D creation suite. It has all the tools for making
linear animation and non-linear (interactive) 3-D graphics. All of these features are
provided in one single application and gives the artist a very smooth workflow from
design, to modeling, animating and on-to publishing of 3-D content. For example if
you needed to make a demo trailer of a game you would need a modeler, a renderer,
a video editing application and the game engine itself to produce the video. Blender
offers you all these tools combined to produce interactive and linear 3-D content.

 The book contains:

• Example game scenes to play with

• Example games and tutorial scenes to change and personalize

• Blender basics for making interactive 3-D graphics

• 3-D game technology basics

• Advanced tips and topics from professional Blender artists

• References for the Blender game engine

 How to use this book?
 First, you should install Blender on your computer. Blenders installation is a very
easy process, but should you experience any difficulties with the installation process
or running Blender, please read Section 29.1. With Blender installed, you can explore
the games on the CD, which accompanies this book.

 Chapter 1 and Part II in Game Creation Kit introduce you to Blender by enabling
you to have fun with 3-D game technology, and teaches you how to use Blender,
supported by many practical examples. Depending on your previous knowledge of
Blender, you should then read the Blender Basics in Chapter 4.

 You are now ready to start with the tutorials. They are divided into beginner,
intermediate and advanced tutorials. If you run into problems please refer to the
index and the glossary to find further information on what is available in this book.
Also, be sure to join the huge and lively Blender Community (see Section 29.4), or
ask our support if you run into troubles.

 I hope you enjoy reading this book. My thanks go to the tutorial writers who have
helped to produce the wonderful content of this book, the developers of Blender and
all other people who have made this book possible.

 Carsten Wartmann, February 2002

 I

15 chapter 3 :: Introduction to 3D and the Game Engine

I

16 Introduction to 3D and the Game Engine :: chapter 3

Chapter 3. Introduction to 3-D and the
Game Engine by Michael Kauppi

3.1. Purpose of This Chapter

 This chapter will introduce you to the world of three dimensional (3-D) computer
graphics, first by introducing the general concepts behind 3-D and then by showing
how those concepts are used in computer graphics. Then, it will introduce you to
game engines, especially Blender‘s game engine, and three aspects that are often
found in good games. This chapter is aimed at those who have little or no experience
in 3-D or with game engines.

3.2. General Introduction to 3-D

 3.2.1. 2-D overview
 We‘ll begin our journey into 3-D with an overview of 2-D because most people
reading this should already know the concepts behind 2-D or least be able to grasp
them fairly quickly.

 XY axes
 You can think of 2-D as being a flat world. Imagine you put a blank piece of paper on
a table, and look down at that paper.

 If that paper represented the 2-D world, how would you describe where things are
located? You need some kind of reference point from which to measure distances.

 I

15 chapter 3 :: Introduction to 3D and the Game Engine

I

16 Introduction to 3D and the Game Engine :: chapter 3

Figure 3-1. X and Y axesFigure 3-1. X and Y axes

 This is generally done by drawing two lines, called axes: one horizontal and the
other vertical (Figure 3-1). The horizontal line is called the X-axis, and the vertical
line is called the Y-axis. Where the axes cross is your reference point, usually called
the “origin”.

Figure 3-2. Positive and negative axes

 Along these axes, imagine a series of regularly spaced hash marks, like the lines on
a ruler. To describe where something is, you count out the distance along the X and
Y axes. Distances to the left and below the origin on the X and Y axes respectively
are negative, while distances to the right and above the origin on the X and Y axes
respectively are positive (Figure 3-3).

 For example, if you wanted to describe where the dot in Figure 3-2 is located, you
would count out 4 units along the X-axis (known as the X coordinate) and 5 units
along the Y-axis (known as the Y coordinate).

 Now with a default origin and XY coordinates, we can begin to describe 2-D
geometry.

 Points

Figure 3-3. Defi ning the position of a point in 2-D space

 The dot from Figure 3-3 is the simplest object that can be described in 2-D, and is
known as a point. To describe a point you only need an X and a Y coordinate.

 Lines
 The next simplest object we can describe in 2-D is the line. To describe a line, you
only need to describe two points (Figure 3-4).

 I

17 chapter 3 :: Introduction to 3D and the Game Engine

Figure 3-4. A line in 2-DFigure 3-4. A line in 2-D

 Polygons
 By connecting three or more lines, you can begin to describe shapes, known as
polygons. The simplest polygon is the three-sided triangle, next is the four-sided
quadrangle, or quadrilateral, (usually shortened to quads), and so on, to infi nity. For
our purposes, we’ll only work with triangles and quads.

 With this knowledge, it’s now time to expand from 2-D to 3-D.

3.2.2. 3-D, the third dimension

 As the name implies, 3-D has an extra dimension but the concepts we covered in the
2-D discussion above still apply.

 Z axis

Figure 3-5. Introduction of the Z axisFigure 3-5. Introduction of the Z axis

I

18 Introduction to 3D and the Game Engine :: chapter 3

 I

19 chapter 3 :: Introduction to 3D and the Game Engine

I

20 Introduction to 3D and the Game Engine :: chapter 3

 Just like 2-D, we need a reference point from which to describe the location of things
in 3-D. This is done by drawing a third axis that is perpendicular to both the X and Y
axes, and passes through the origin. This new axis is usually called the Z-axis, and
values above and below the origin are positive and negative respectively (Figure
3-5). By using this new axis we can describe objects as they exist in the real world.

 Points

Figure 3-6. Defi ning a point in 3-DFigure 3-6. Defi ning a point in 3-D

 To describe a point in 3-D, we now need three coordinates: the X, Y and Z
coordinates (Figure 3-6).

 Lines

Figure 3-7. Lines are not confi ned to 2-DFigure 3-7. Lines are not confi ned to 2-D

 I

19 chapter 3 :: Introduction to 3D and the Game Engine

I

20 Introduction to 3D and the Game Engine :: chapter 3

 As in 2-D, we can describe a line by defi ning two points, but now our line does not
have to lay fl at, it can be at any angle imaginable (Figure 3-7).

 Polygons

Figure 3-8. Polygons are not confi ned to 2-D

 By connecting lines, we can form polygons just like in 2-D. Our polygons, just like
our lines, are no longer confi ned to the fl at 2-D world (Figure 3-8). Because of this,
our fl at 2-D shapes can now have volume. For example, a square becomes a cube, a
circle becomes a sphere and a triangle becomes a cone (Figure 3-9).

Figure 3-9. Some 2-D shapes and their 3-D counterparts

 Now with the basics of 3-D covered, let’s see how they relate to 3-D computer
graphics.

 I

21 chapter 3 :: Introduction to 3D and the Game Engine

I

22 Introduction to 3D and the Game Engine :: chapter 3

3.2.3. 3-D computer graphics

 By now, you should have the general concepts of 3-D in mind. If not, go back and
reread the previous sections. Having these concepts in mind will be very important
as you proceed through this guide. Next, we‘ll show you how the concepts of 3-D are
used in 3-D computer graphics, also known as computer graphic images (CGI).

 Terminology
 A slightly different set of terms is used for CGI. Table 3-1 show how those terms
relate to what you have learned so far.

Table 3-1. CGI Terminology

3-D term Related CGI term

Point Vertex

Line Edge

Polygon Polygon

 Armed with our new terminology, we can now discuss CGI polygons.

 Triangles, quads
 While theoretically, a polygon can have an infi nite number of edges, the more edges
there are, the more time it takes a computer to calculate that shape. This is why
triangles and quads are the most common polygons found in CGI, they allow the
creation of just about any shape and do not put too much stress on the computer to
calculate. But how do you form shapes with triangles and quads?

 Mesh
 As discussed before, our polygons are no longer confi ned to the fl at 2-D world. We
can arrange our polygons at any angle we choose, even “bending” our polygons if
necessary. By combining a series of polygons together at various angles and sizes,
we can create any 3-D shape we want.

Figure 3-10. Combining polygons to more complex shapes

 I

21 chapter 3 :: Introduction to 3D and the Game Engine

I

22 Introduction to 3D and the Game Engine :: chapter 3

 For example, six squares can combined to make a cube, and four triangles and a
square form a pyramid (Figure 3-10). By increasing the number of polygons and
manipulating their locations, angles and sizes we can form complex objects (Figure
3-11). As you can see, the more complex an object, the more it takes on a mesh-
like appearance. In fact, the object in Figure 3-11 is being viewed in “wire mesh”
mode. You’ll often hear the term “mesh” used to describe any combination of CGI
polygons.

Figure 3-11. Arch made of quad based blocks

 Primitives
 As shown above, we can create shapes by combining polygons, but to form basic
shapes by hand (such as spheres, cones, and cylinders) would be very tedious. So 3-
D applications like Blender have preprogrammed shapes called “primitives” that you
can quickly add to a 3-D scene. Blender’s mesh primitives include: planes, cubes,
spheres, cones, cylinders and tubes. There are other primitives as well (not all of
them mesh based), and you will learn about them as you develop your Blender skills.

 Faces

Figure 3-12. Unfaced (left) and faced polygon (right)

 I

23 chapter 3 :: Introduction to 3D and the Game Engine

I

24 Introduction to 3D and the Game Engine :: chapter 3

 Polygons can be faced or unfaced. You can think of an unfaced polygon as being
made of just wire, while a faced polygon has a “skin” stretched over that wire
(Figure 3-12). When you tell Blender to draw your 3-D scene, called rendering, the
faced polygons will appear solid, while the unfaced polygons will appear as holes
(Figure 3-13).

Figure 3-13. Unfaced polygons appear as holes in objects

 Materials

Figure 3-14. Sphere objects with different materialsFigure 3-14. Sphere objects with different materials

 Look at objects around you, they have many characteristics. Some are shiny, some
are matte. Some are opaque, some are transparent. Some appear hard, while others
appear soft. To recreate these characteristics in the 3-D world, we apply a “material”
to an object which tells Blender how to render the object’s color, how shiny the
object should appear, its perceived “hardness” and other properties (Figure 3-14).

 I

23 chapter 3 :: Introduction to 3D and the Game Engine

I

24 Introduction to 3D and the Game Engine :: chapter 3

 Textures
 Take a look at the things around you again. Besides their material properties, the
things around you also have texture. Texture affects not only how something feels
(smooth or rough), but also how something looks (colors and patterns). Since we
can’t touch what we make in the 3-D CGI world, we will focus on how things look.

 Image maps

Figure 3-15. Map of the eart (back) wrapped around a sphere

 A common method for applying textures is through the use of image maps. That is
2-D images which we then “wrap” around an object (see Figure 3-15).. Image maps
allow us to represent minute detail on our models (objects) that would be diffi cult
to model directly and that would greatly increase the number of polygons if we did
model them. Using image maps lets us keep the number of polygons low on our
models, thus letting Blender render our scenes faster, which is especially important
for real-time rendering in the game engine.

 UV mapping

Figure 3-16. Badly mapped earth texture

 I

25 chapter 3 :: Introduction to 3D and the Game Engine

I

26 Introduction to 3D and the Game Engine :: chapter 3

 One common problem with image maps is the accurate wrapping of the maps
around an object, especially a complex one. Many times the texture will not
be aligned as we wish or it may “stretch” (Figure 3-16). A popular method for
overcoming this problem is the use of UV mapping.

 UV vs. XY coordinates
 In order to continue, it is necessary to point out what UV coordinates are. As
mentioned in the 3-D overview, you can describe a point (vertex) by giving its X,
Y and Z coordinates. If you want to ‘map’ a 2-D image onto a 3-D object, the XYZ
coordinates have to be transformed into two dimensions. These transformed
coordinates are usually called the “UV coordinates”. Instead of calculating UV
coordinates automatically, you can define them yourself in Blender. This means, that
for each vertex, not only a an XYZ coordinate is stored, but also the two values for U
and V.

Figure 3-17. Badly positioned head texture

 So, how does UV mapping work? Take a look at the head object in Figure 3-17. Each
corner of the faces is a vertex, and each vertex has an XYZ and UV coordinate as
explained earlier. Using Blender’s UV editor, we unwrap the mesh, much like we do
when we take a globe and lay it flat to make a map of the world, and lay that mesh on
top of our 2-D image texture.

 Then, by moving the unwrapped mesh’s UV coordinates, we can tell Blender exactly
where the texture should go when Blender wraps the texture around our 3-D object
(Figure 3-18).

Figure 3-18. Finally placed texture

 I

25 chapter 3 :: Introduction to 3D and the Game Engine

I

26 Introduction to 3D and the Game Engine :: chapter 3

 The reason it is called a UV editor and not a UVW editor, is that we make our
adjustments in 2-D (UV) and Blender automatically takes care of the W coordinate
when it wraps the texture around our model. Not having to worry about the third
dimension makes our job easier in this case.

 Viewing 3-D space
 To do anything in 3-D, we need to be able to see what we are doing. This is
accomplished using “views”. This section will discuss the various views available
in Blender (“standard”, “interactive” and “camera” views), and the two view modes
available. This section will not cover the steps you need to take to use the views.
Those will be explained in Section 4.10. It will also mention the use of lights, which
are not actually views but are necessary if you want to see anything when you
render your 3-D scene and can be used to alter the mood of our scenes.

 Standard

Figure 3-19. Blender’s six fi xed viewsFigure 3-19. Blender’s six fi xed views

 There are six pre-programmed standard views in Blender, each looking along
a particular axis as shown in Figure 3-19. These views are generally used when
modeling objects because they help to provide a sense of orientation. They are also
useful if you get disoriented using the interactive view.

 I

27 chapter 3 :: Introduction to 3D and the Game Engine

I

28 Introduction to 3D and the Game Engine :: chapter 3

 Interactive (free)

Figure 3-20. Guess the true shape of this object!

 While the standard views are very useful for modeling, sometimes they don’t help
us visualize how an object will look in 3-D (Figure 3-20). This is when Blender’s
interactive view becomes useful. Blender’s interactive view allows you to rotate your
entire 3-D scene in any direction interactively (in real-time) to let you view things
from any angle (Figure 3-21). This helps you visualize how your scenes and models
will look.

Figure 3-21. Object from Figure 3-20in a perspective view

 I

27 chapter 3 :: Introduction to 3D and the Game Engine

I

28 Introduction to 3D and the Game Engine :: chapter 3

 Cameras

Figure 3-22. Image from Figure 3-14 and how the camera was positioned in the scene

 The standard and interactive views are generally not used when it is time to render
your scenes (stills, animations or real-time rendering in the game engine). Instead,
you use a camera view for rendering. You can think of this like a movie set. You are
the director and can walk around and look at your set from any direction you want
(standard and interactive views) to make sure everything is just as you want it, but
when it is time to shoot the scene you need a camera. This is what your audience
will see, and the same holds true for camera views (Figure 3-22).

 View modes

Figure 3-23. Othogonal and perspective modesFigure 3-23. Othogonal and perspective modes

 Here are two viewing modes for all the views in Blender: “orthogonal” and
“perspective”. Orthogonal mode views everything without perspective, whereas the
perspective mode, as the name implies, uses perspective (Figure 3-23). Orthogonal
mode is useful when creating your models because there is none of the “distortion”
associated with the perspective mode, and this helps your accuracy. The perspective
mode, like the interactive view, can help give you a sense of what your model will

 I

29 chapter 3 :: Introduction to 3D and the Game Engine

I

30 Introduction to 3D and the Game Engine :: chapter 3

look like, but without the need to rotate the entire 3-D scene. Rotating the entire
scene can be slow if it is very complicated.

 Lights
 When you are ready to render your scene, or play your game, you will need at least
two things: a camera and lights. If you try to render without a camera you will get
an error message, but if you try to render without a light all you will get is a black
image. This is one of the most common mistakes for new to Blender users, so if you
try to render something and all you get is a black square be sure to check if you’ve
put in a lamp or not. For the interactive 3-D graphics, there can be scenes without
light, but they usually look fl at.

Figure 3-24. Same scene rendered with different lights

 There is more to lights than just being able to see. Just like in real life, lights can
help set the atmosphere or mood of a scene. For example, using a low blue light
helps to create a “cool/cold” atmosphere, while a bright orange light might create
a “warm” one (Figure 3-24). Lights can be used to simulate ambient light, muzzle
fl ashes or any other effect where you would expect to see light.

 Because you will be creating games with objects that move and change, there is
another important concept we must cover:

 Transformations

Figure 3-25. Local axis of an object

 I

29 chapter 3 :: Introduction to 3D and the Game Engine

I

30 Introduction to 3D and the Game Engine :: chapter 3

 As touched on earlier, we describe the locations of objects in our 3-D worlds by
using an origin and a XYZ coordinate system to measure with. The coordinates
calculated from this default origin are known as global coordinates. In addition, an
object’s center serves as its own origin, and so the object can have its own XYZ axes
(Figure 3-25). This is called a local origin, and a local coordinate system with local
coordinates. But why is this important?

 A game where nothing moves or changes will not get much of a following. The
objects in your games will need to move, and this is one place where the concept of
transformations becomes important. The three most common transformations are
translation, rotation and scaling.

Table 3-2. Transformations

Transformation Description

Translation When an object move from point A to
point B

Rotation When an object spins around a
particular point or axis

Scaling When an object increases or decreases
in size

 When you make your games, you‘ll have to keep in mind that transformations are
relative and can affect game play. When an object translates from point A to B in
the global coordinate system, from that object‘s point of view, its local coordinate
system doesn‘t necessarily move. For example, a character standing in a moving
train seems to be stationary from their point of view. The train‘s speed may be 100
kph, but the character feels like they are standing still. Their local origin (their center)
doesn‘t move as far as they are concerned.

 However, if we look at the same character from the point of view of someone
standing still outside the train, now the character is moving. From this second
character’s local point of view, they are standing still and the first character is
moving, but neither are rotating. Or are they?

 If we look from the point of view of another character, hovering in space, not only
are both of the other characters on the Earth, rotating as the Earth rotates on its axis,
but also as the Earth rotates around the Sun. So, how does this affect game play?
Imagine everyone is trying to hit a stationary target on the train. The first character
has the easiest job, a stationary target, the second character has to hit moving
target, and the third character has to hit a target that is moving and experiencing
two forms of rotation.This shifting of points of view is called “coordinate
transformation”, and as you can see, it can have an important impact on game play.

 In most 3-D software packages you can work with these coordinate systems using
so-called “hierarchies”. You can define one object as being the “parent” of another
object; which then becomes a child. Now all transformations of the parent are also
applied to its children. That way you only have to define motion for a parent to have
all its children moving in the same way. In the solar system example, we humans all
are in fact “children” of the Earth, which in turn is a “child” of the Sun.

 One last point that needs to mentioned is that transformation is not restricted to
just shapes. Materials, textures, and even lights can be moved, rotated and scaled.
In fact, anything that exists in your 3-D world is actually an object and so is subject

 I

31 chapter 3 :: Introduction to 3D and the Game Engine

I

32 Introduction to 3D and the Game Engine :: chapter 3

to transformations. As your 3-D skills develop, you will learn how to use global, local
and relative transformations to affect game play and to create interesting effects.
Now that you have received a basic introduction to 3-D CGI, it’s time to talk about
game engines and aspects of good games.

3.3. Game Engines and Aspects of a Good Game

3.3.1. What is a game engine?

 A game engine is software that simulates a part of reality. Through a game engine,
you interact with a 3-D world in real-time, controlling objects which can interact with
other objects in that world. If you have ever played a video game on a computer, a
console or in a game arcade, you have used a game engine of some kind. The game
engine is the heart of a game and consists of several parts. One part displays the
3-D world and its objects on your screen, drawing and redrawing your scenes as
things change. Another part deals with decision making (known as game logic),
for example, deciding when events like doors opening should occur. Another part
simulates physics, such as gravity, inertia, momentum and so on. Yet another part
detects when objects collide with each other, while another actually moves objects.

 The game engine tries to simulate all these things as quickly as possible to provide
a smooth fluid simulation.

 For example, in a computer baseball game, the game engine will have the pitcher
throw you a pitch (moving an object). As the ball travels the game engine will
calculate all the physics that act on the ball, such as gravity, air resistance, etc. Then
you swing the bat (or more accurately, you tell the game engine to swing the batter’s
bat) and hopefully hit the ball (i.e. collision detection between the ball and bat).

 This is a very simplified example. he game engines you have used are much more
complicated, and can take a team of programmers and a great deal of time to create.
Or at least, that was the case until Blender’s game engine was released.

3.3.2. Blender’s game engine -- Click and drag game
creation

 Blender is the first game engine that can create complete games without the need to
program. Through its click-and-drag graphical user interface (GUI), even those with
no programming experience can enjoy the challenge of creating fun and exciting
games.

 After you create your 3-D world and 3-D objects, you only need to use a series of
pull-down menus, simple key strokes and mouse clicks to add behavioral properties
to that world and those objects and bring them to life. For professionals, this allows
for the rapid prototyping of games, and for non-professionals, it’s the first chance to
produce their own games without having to spend years learning to program or the
need for large programming teams. Of course, for those who can program, Blender

 I

31 chapter 3 :: Introduction to 3D and the Game Engine

I

32 Introduction to 3D and the Game Engine :: chapter 3

uses the Python scripting language to allow programmers to extend Blender’s game
engine even further.

 This relative ease of use, though, hides the Blender game engine’s true innovation...

3.3.3. “True” and “fake” 3-D game engines

 Blender is a „true“ 3-D game engine. Until recently, game logic (decision making)
wasn‘t done on an object level. This meant that a „higher intelligence“ (HI) in the
game had to control all the objects, moving them when appropriate or keeping track
of their condition (i.e. alive or dead). With the advent of „true“ 3-D game engines,
each object in a game is its own entity and reports such information back to the
game engine.

 For example, if you are playing a game where you walk through a maze that has
hidden doors, in the past the HI would have had to decide when you were close
enough to a hidden door and then open it. With Blender’s game engine, the door
itself can have a sensor function and will determine when another object is close
enough, then the door will open itself.

 Another example would be a shooting game. The gun has logic attached that
detects when you pull the trigger, the gun then creates a new bullet object with a
certain starting speed. The bullet, which is now its own entity, shoots out of the gun
and flies through the air all the while being affected by air resistance and gravity.
The bullet itself has sensors and logic as well, and detects whether it hits a wall or
an adversary. On collision, the logic in the bullet and the logic in the collided object
define what will happen.

 In the past, when you pulled the trigger, the game engine would calculate whether a
bullet fired at that time would hit the target or not. There was no actual bullet object.
If the game engine determined that a hit would have occurred, it then told the object
that had been hit, how to react.

 The advantage of Blender’s “real” 3-D game engine is that it does a better job
of simulating reality because it allows for the randomness that occurs in the real
world. It also distributes the decision load so that a single HI isn’t required to decide
everything.

 While Blender provides you with the technology to create good games, it doesn’t
create them automatically. To create good games, you need to understand three
important aspects of games.

3.3.4. Good games

 If you analyze successful games, you will find that they have three aspects in
varying degrees. This is known as the „Toy, immersive, goal“ theory of game
creation.

 Toy
 The toy aspect of a game refers to the immediate fun of just playing it. You don’t
need to think too much, you can just grab the mouse or the game controller and

 I

33 chapter 3 :: Introduction to 3D and the Game Engine

I

34 Introduction to 3D and the Game Engine :: chapter 3

start playing, much like you did with your toys when you were a child. You didn’t
need to read a manual on how to play with your toy cars, or spend time figuring out
complicated strategy. In short, games with a high degree of toy are very intuitive.
Think of your favorite arcade game at your local game arcade. Most likely you only
needed one joystick and two or three buttons, or a simple gun with a trigger.

 This doesn’t mean that such games don’t require skill, but that you can gain
immediate enjoyment from playing them.

 Immersive
 The “immersive” aspect of a game is the degree to which a game makes you
forget you are playing a game, sometimes called the “suspension of disbelief”.
Flight simulators or racing simulators are a good example of this. Realism is an
important factor in this, and is one of the reasons that simulators have reached such
an advanced level in realism. The “Mechwarrior” series and “WarBirds” are two
excellent examples of immersive games which have very realistic environments,
animations and sounds. They are fairly low on the toy aspect and take some time to
learn to play, with almost every key on the keyboard used for some function.

 The old one-button joysticks have been replaced with HOTAS (Hands On Throttle
And Stick) systems consisting of a joystick with seven to ten buttons for one hand,
a throttle device with an equal number of buttons or dials for the other and even
pedals for your feet. These systems combine with the game to create an incredibly
immersive environment. These games also often have a high degree of “goal”.

 Goal
 The “goal” aspect of a game is the degree to which a game gives you a goal to
achieve. This often involves a lot of strategy and planning. “Age of Empires” and
“SimCity” are two games that are very goal oriented. Goal oriented games are
often very low on the toy aspect, “SimCity” for example comes with a thick manual
explaining all the intricate details of “growing” a successful city. This is not always
the case though: “Quake” is a goal oriented game which also has a good deal of toy
and immersive aspects to it.

 Balance
 When you create your games, you will have to strike a balance among the toy,
immersive and goal aspects of your games. If you can create a game that has a high
degree of each aspect, you’ll most likely have a hit on your hands.

3.4. Conclusion

 In this chapter you have been introduced to the basic concepts of 3-D including
vertices, polygons, materials, textures, origins, coordinate systems and
transformations. You have also been introduced to what makes a game work, both
on a technological level with the discussion of game engines, and on a conceptual
level with the discussion of what makes good games good.

 The rest of this book will show you how to use Blender to put these concepts to
work when creating games. Once you have finished this guide, you’ll have all the
tools you’ll need to make games, the rest will fall to your own creativity. Good luck
and we look forward to seeing you announce your games on Blender’s discussion
boards (see Section 29.4).

 I

33 chapter 3 :: Introduction to 3D and the Game Engine

I

34 Introduction to 3D and the Game Engine :: chapter 3

Chapter 4. Blender Basics
 For beginners the Blender user interface can be a little confusing as it is different
than other 3-D software packages. But persevere! After familiarizing yourself with
the basic principles behind the user interface, you’ll start to realize just how fast you
can work in your scenes and models. Blender optimizes the day-to-day work of an
animation studio, where every minute costs money.

Figure 4-1. The first start

Info: The installation of Blender is simple just unpack it and place it in a directory of your
chosing (or let the installer do it). The installation is described in detail in Section 29.1.

 After starting Blender you get a screen as shown in Figure 4-1. The big Window is a
3DWindow where your scene and objects are displayed and manipulated.

 The smaller window, located below the 3DWindow, is the ButtonsWindow where
you can edit the various settings of selected objects, and the scene.

4.1. Keys and Interface conventions

 During its development, which followed the latest 3D graphics developments, an
almost new language also developed around Blender. Nowadays, the whole Blender
community speaks that language which Ton Roosendaal - the father of Blender -
often calls “Blender Turbo language”. This language makes it easy to communicate
with other Blender users worldwide.

 In this book we will markup keypresses as AKEY, BKEY, CKEY... and ZKEY. This will
allow you to see what is done in a tutorial at a glance, once you know the shortcuts.

 I

35 chapter 3 :: Introduction to 3D and the Game Engine

I

36 Introduction to 3D and the Game Engine :: chapter 3

Keycombinations are marked up as SHIFT-D or CTRL-ALT-A for example.

 The mouse buttons are nothing like keys and so are marked up as LMB, MMB
and RMB for left, middle and right mouse button. It is recommended that you
use Blender with a three button mouse. If you have a two button mouse you can
substitute the middle mouse button by holding ALT and using the left mouse button
(LMB).

 References to interface elements (GUI, graphical user interface) are marked up in
exclamation marks for example the “Load” Button.

 Names from Blender’s GUI and special Blender terms are written in a special
way to make them stick out from the rest of the text. For example, the window
showing the 3-D objects is called 3DWindow, other examples are ButtonsWindow,
PaintFaceButtons or EditMode.

4.2. The Mouse

Blender is designed to be used with two hands: one hand using the keyboard,
the other hand using the mouse. This prompts me to mention the ‘Golden Rule of
Blender’:

Tip: Keep one hand on your keyboard and one hand on your mouse!

 The mouse is particularly important because by using it you can control more than
one axis at time. As far as possible, the mouse has the same functionality in all of
Blenders’s sections and windows.

 Left Mouse Button (LMB)
 With the left mouse button you can activate buttons and set the 3D-Cursor. Often
“click and drag the left button” is used to change values in sliders.

 Middle Mouse Button (MMB)

Tip: On systems with only two mouse buttons, you can substitute the middle mouse
button with the ALT key and the left mouse button.

 The middle mouse button is used predominantly to navigate within the windows. In
the 3DWindow it rotates the view. Used together with SHIFT it drags the view, and
with CTRL it zooms. While manipulating an object, the middle mouse button is also
used to restrict a movement to a single axis.

 Right Mouse Button (RMB)
 The right mouse button selects or activates objects for further manipulation.
Objects change color when they are selected. Holding SHIFT while selecting with the
right mouse button adds the clicked object to a selection. The last selected object
is the active object that is used for the next action. If you SHIFT-RMB an already
selected object, it becomes the active object. One more click and you can de-select it.

 I

35 chapter 3 :: Introduction to 3D and the Game Engine

I

36 Introduction to 3D and the Game Engine :: chapter 3

4.3. Loading and saving

Figure 4-2. FileMenu

In the Header of the InfoWindow,
normally located on the top of the
screen, you will find a menu. It offers
you standard operations like file
operations and changing of views.

Figure 4-3. Blender’s main menu, the Toolbox

The SPACE key brings up the Toolbox,
a large pop-up menu that offers you
the most commonly used operations in
Blender. The “FILE” entry allows you
also to action file operations. Behind
every command you will find the
associated hotkey.

Tip: Use the toolbox to learn the hotkeys in Blender!

 The most common file operations in Blender are the loading and saving of scenes.
The quickest way to action these common functions is via the hotkeys: F1 offers you
a FileWindow to load a scene, F2 a FileWindow to save a scene.

 I

37 chapter 3 :: Introduction to 3D and the Game Engine

I

38 Introduction to 3D and the Game Engine :: chapter 3

 FileWindow
 However you decide to initiate a file operation, you will always get its appropriate
FileWindow.

Figure 4-4. Blender FileWindow

 The main part of a FileWindow is the listing of directories and files. File types known
by Blender are allocated a yellow square. A click with the LMB selects a file and puts
the name into the filename-input. A ENTER or click on the “LOAD FILE” button will
then load the file. Cancel the operation using ESC or the “Cancel” button. A LMB-
click on a directory enters it. A shortcut to load files is the MMB, which quickly loads
the file. You can also enter the path and filename by hand in the two inputs at the top
of the FileWindow.

With the RMB, you can select more than one. The selected files are highlighted in
blue.

Tip: The PAD+ and PAD- keys increase and decrease the last number in a filename
respectively. This is handy for saving versions while you work.

 The button labeled with a “P” at the upper left corner of the FileWindow puts
you one directory up in your path. The MenuButton below it offers you the last
directories you have visited, as well as your drives in Windows.

Figure 4-5. FileWindow Header with valuable information

 The button labeled “A/Z” uses an alphabetical sorting, the clock button sorts by the
file date, and the next button by the file size. Right of these buttons there is a piece
of text that shows what kind of operation the FileWindow will do, e.g. “LOAD FILE”.

 I

37 chapter 3 :: Introduction to 3D and the Game Engine

I

38 Introduction to 3D and the Game Engine :: chapter 3

The next button selects between long (size, permissions, date) and short filenames.
The little ghost hides all files beginning with a dot. After that button, you have
information about the free space remains on the disk, and how many megabytes big
the selected files are.

 Version control and backupfiles

Figure 4-6. Version control and backup settings in the InfoWindow

 Blender follows a simple straightforward method to provide an “undo”. When you
enlarge the InfoWindow by pulling down the edge, you can see the controls for
backups and version control.

 With the activated “Auto Temp Save” button Blender will automatically write a
backup after the number of minutes entered in the “Time:” button to the directory
entered in the “Dir:” Button. Clicking “Load Temp” will load the last written
temporary file.

 When you write a file, Blender will keep the old file as *.blend1 for backup.
“Versions:” controls how many version files are written.

 Beside these possibilities for disaster recovery, Blender writes a file quit.blend
which contains your last scene into the temporary directory “Dir:” when you quit
Blender.

4.4. Windows

 All Blender screens consist of Windows. The Windows represent data, contain
buttons, or request information from the user. You can arrange the Windows in
Blender in many ways to customize your working environment.

 Header
 Every Window has a Header containing buttons specific for that window or
presenting information to the user. As an example, the header of the 3DWindow is
shown here.

 The left-most button shows the type of the Window, clicking it pops up a menu to
change the Window type.

 The next button switches between a full screen and a tiled screen window. The
button featuring a house graphic fills the window to the maximum extent with the
information it is displaying.

 I

39 chapter 3 :: Introduction to 3D and the Game Engine

I

40 Introduction to 3D and the Game Engine :: chapter 3

Figure 4-7. HeaderMenu

A RMB-click on the Header pops up a menu asking you
to place the Header at the “Top”, the “Bottom”, or to
have “No Header” for that Window.

Click and hold with the MMB on the header, and then
drag the mouse to move the header horizontally in case
it doesn’t fit the width of the window.

 Edges
 Every time you place the mouse cursor over the edge of a Blender window, the
mouse cursor changes shape. When this happens, the following mouse keys are
activated:

 LMB
Drag the window edge horizontally or vertically while holding down the LMB. The
window edge always moves in increments of 4 pixels, making it relatively easy to
move two window edges so that they are precisely adjacent to each other, thus
joining them is easy.

 MMB or RMB
Clicking an edge with MMB or RMB pops up a menu prompting you to “Split Area”
or “Join Areas”.

“Split Area” lets you choose the exact position for the border. Split always works
on the window from which you entered the edge. You can cancel the operation with
ESC.

“Join Areas” joins Windows with a shared edge, if possible, which means that
joining works only if Blender don’t have to close more than one Window for joining.

4.5. The Buttons

Buttons offer the quickest access to DataBlocks. In fact, the buttons visualize a single
DataBlock and are grouped as such. Always use a LeftMouse click to call up Buttons.
The buttons are described below:

 Blender button types

Button
 This button, which is usually displayed in salmon color, activates
 a process such as „New“ or „Delete“.

 I

39 chapter 3 :: Introduction to 3D and the Game Engine

I

40 Introduction to 3D and the Game Engine :: chapter 3

TogButton

 This button, which displays a given option or setting, can be
 set to either OFF or ON.

Tog3Button

 This button can be set to off, positive or negative. Negative
 mode is indicated by yellow text.

RowButton

 This button is part of a line of buttons. Only one
 button in the line can be active at once.

NumButton

 This button, which displays a numerical value, can be used in
 three ways:

Hold the button while moving the mouse. Move to the right and upwards to assign
a higher value to a variable, to the left and downwards to assign a lower value. Hold
CTRL while doing this to change values in steps, or hold SHIFT to achieve finer
control.

Hold the button and click SHIFT-LMB to change the button to a „TextBut“. A cursor
appears, indicating that you can now enter a new value. Enter the desired value and
press ENTER to assign it to the button. Press ESC to cancel without changing the
value.

Click the left-hand side of the button to decrease the value assigned to the button
slightly, or click the right-hand side of the button to increase it.

NumSlider
 Use the slider to change values. The left-hand side
 of the button functions as a „TextBut“.

TextButton
 This button remains active (and blocks the rest of
 the interface) until you again press LMB, ENTER or
ESC. While this button is active, the following hotkeys are available:

 ESC : restores the previous text.

 SHIFT+BACKSPACE : deletes the entire text.

 SHIFT+ARROWLEFT: moves the cursor back to the beginning of the text.

 SHIFT+ARROWRIGHT: moves the cursor to the end of the text.

 I

41 chapter 3 :: Introduction to 3D and the Game Engine

I

42 Introduction to 3D and the Game Engine :: chapter 3

 MenuButton
This button calls up a PupMenu. Hold LMB while moving the cursor to select an
option. If you move the mouse outside of the PopUpMenu, the old value is restored.

 IconButton

Button type „But“ activates processes.

 IconToggle

Button type „TogBut“ toggles between two modes.

IconRow

As button type „RowBut“: only one button in the row of buttons can be active at
once.

 IconMenu

Click with LMB to see the the available options.

4.6. Windowtypes

 DataSelect, SHIFT-F4
 For browsing the data structure of the scene, and selecting objects from it.

 3DWindow, SHIFT-F5
 Main window while working in the 3D-space. It visualizes the scene from
orthogonal, perspective, and camera views.

 IpoWindow, SHIFT-F6
 Creating and manipulating of so called IpoCurves, the animation curve
system of Blender.

 ButtonWindow, SHIFT-F7
 The ButtonWindow contains all the buttons needed to manipulate every
aspect of Blender. A brief overview follows after this section; for a more
detailed explanation see the reference section of this manual.

 I

41 chapter 3 :: Introduction to 3D and the Game Engine

I

42 Introduction to 3D and the Game Engine :: chapter 3

 SequenceEditor, SHIFT-F8
 Post-processing and combining animations and scenes.

 OopsWindow, SHIFT-F9
 The OopsWindow (Object Oriented Programming System) gives a schematic
overview of the current scene structure.

 ImageWindow, SHIFT-F10
 With the ImageWindow you can show and assign images to objects. Especially
important with UV-texturing.

 InfoWindow
 The header of the InfoWindow shows useful information, it contains the menus and
the scene and screen MenuButtons. The InfoWindow itself contains the options by
which you can set your personal preferences.

 TextWindow, SHIFT-F11
 A simple text editor, mostly used for writing Python-scripts, but also a useful means
by which you can insert comments about your scenes.

 ImageSelectWindow
 Lets you browse and select images on your disk. Includes thumbnails for preview.

 SoundWindow, SHIFT-F12
 For the visualization and loading of sounds.

 ActionWindow
 For editing the poses and animations of Armatures (Bones).

ButtonsWindow

The ButtonsWindow contains the buttons needed for manipulating objects and
changing general aspects of the scene.

 The ButtonsHeader contains the icons to switch between the different types of
ButtonsWindows.

 ViewButtons
 The 3DWindow settings for a Window. It only features buttons if selected from a
3DWindow and will then provide settings for the grid or background images. Every
3DWindow can have its own settings.

 I

43 chapter 3 :: Introduction to 3D and the Game Engine

I

44 Introduction to 3D and the Game Engine :: chapter 3

 LampButtons, F4
 The LampButtons will only display when a lamp is selected. Here you can change all
of the parameters of a lamp, like its color, energy, type (i.e. Lamp, Spot, Sun, Hemi),
the quality of shadows, etc.

 MaterialButtons, F5
 The MaterialButtons appears when you select an object with a material assigned.
With these clutch of buttons you can control every aspect of the look of the surface.

 TextureButtons, F6
 These buttons let you assign textures to materials. These textures include
mathematically generated textures, as well as the more commonly used image
textures.

 AnimationButtons, F7
 The AnimationButtons are used to control various animation parameters. The right
section of the buttons are used for assigning special animation effects to objects,
e.g. particle systems, and wave effects.

 RealTimeButtons, F8
 These buttons are part of the real time section of Blender. This manual covers only
linear animation.

 EditButtons, F9
 The EditButtons offer all kinds of possibilities for you to manipulate the objects
themselves. The buttons shown in this window depend on the type of object that is
selected.

 WorldButtons
 Set up global world parameters, like the color of the sky and the horizon, mist
settings, and ambient light settings.

 Face/PaintButtons
 These buttons are used for coloring objects at vertex level, and for setting texture
parameters for the UV-Editor.

 RadiosityButtons
 The radiosity renderer of Blender. Not covered in this manual.

 I

43 chapter 3 :: Introduction to 3D and the Game Engine

I

44 Introduction to 3D and the Game Engine :: chapter 3

 ScriptButtons
 Assigning of Python scripts to world, material, and objects (BlenderCreator).

 DisplayButtons, F10
 With the DisplayButtons you can control the quality and output-format of rendered
pictures and animations.

4.7. Screens
Figure 4-8. Screen browse

 Screens are the major frame work of Blender. You can have as many Screens as you
like, each one with a different arrangement of Windows. That way you can create a
special personal workspace for every task you do. The Screen layout is saved with
the Scene so that you can have scene-dependant work spaces. An example of this
is to have a Screen for 3-D work, another for working with Ipos and, a complete file
manager to arrange your files and textures.

4.8. Scenes
Figure 4-9. Scene browse

 Scenes are a way to organize your work and to render more than one scene in the
Blender game engine for example to display a instruments panel overlay. Another
possibility is to switch scenes from the game engine and this way changing levels of
a game.

 While you are adding a new scene, you have these options:

“Empty”: create a completely empty scene.

“Link Objects”: all Objects are linked to the new scene. The layer and
selection flags of the Objects can be configured differently for each Scene.

“Link ObData”: duplicates Objects only. ObData linked to the Objects, e.g.
Mesh and Curve, are not duplicated.

“Full Copy”: everything is duplicated.

4.9. Setting up your personal environment

With the possibilities listed above, you can create your own personal environment.

 I

45 chapter 3 :: Introduction to 3D and the Game Engine

I

46 Introduction to 3D and the Game Engine :: chapter 3

To make this environment a default when Blender starts, or after you reset Blender
with CTRL-X, use CTRL-U to save it to your home directory.

4.10. Navigating in 3D

 Blender is a 3-D program, so we need to be able to navigate in 3D space. This is a
problem because our screens are only 2-D. The 3DWindows are in fact “windows” to
the 3-D world created inside Blender.

4.10.1. Using the keyboard to change your view

 Place your mouse pointer over the big window on the standard Blender screen. This
is a 3DWindow used for showing and manipulating your 3D-worlds.

Info: Remember that the window with the mouse pointer located over it (no click needed)
is the active window! This means that only this window will respond to your key presses.

 Pressing PAD1 (the number “1” key on the numeric pad) gives you a view from
the front of the scene. In the default Blender scene, installed when you first start
Blender, you will now be looking at the edge of a plane with the camera positioned in
front of it. With holding the CTRL key (on some systems also SHIFT is possible), you
can get the opposite view, which in this case is the view from the back (CTRL-PAD1).

PAD7 returns you to the view from the top. Now use the PAD+ and PAD- to zoom in
and out. PAD3 gives you a side view of the scene.

PAD0 switches to a camera-view of the scene. In the standard scene you only see the
edge of the plane because it is at the same height as the camera.

PAD/ only shows selected objects; all other objects are hidden. PAD. zooms to the
extent of the selected objects.

Switch with PAD7 back to a top view, or load the standard scene with CTRL-X. Now,
press PAD4 four times, and then PAD2 four times. You are now looking from the
left above and down onto the scene. The ‘cross’ of keys PAD8, PAD6, PAD2 and
PAD4 are used to rotate the actual view. If you use these keys together with SHIFT,
you can drag the view. Pressing PAD5 switches between a perspective view and an
orthogonal view.

Tip: Use CTRL-X followed by ENTER to get a fresh Blender scene. But remember, this
action will discard all changes you have made!

You should now try experimenting a little bit with these keys to get a feel for their
operation and function.

If you get lost, use CTRL-X followed by ENTER to get yourself back to the default
scene.

 I

45 chapter 3 :: Introduction to 3D and the Game Engine

I

46 Introduction to 3D and the Game Engine :: chapter 3

4.10.2. Using the mouse to change your view

 The main button for navigating with the mouse in the 3DWindow is the middle
mouse button (MMB). Press and hold the MMB in a 3DWindow, and then drag
the mouse. The view is rotated with the movement of your mouse. Try using a
perspective view (PAD5) while experimenting -- it gives a very realistic impression
of 3D.

With the SHIFT key, the above procedure translates the view. With CTRL, it zooms
the view.

With the left-most icon, you can switch the window to different window types (e.g.
3DWindow, FileWindow, etc.). The next icon in the line toggles between a full screen
representation of the window and its default representation. The icon displaying a
house on it zooms the window in such a way that all objects become visible.

 Next in the line, including the icon with the lock on it. We
 will cover this later on in the manual.

The next icon
switches the modes
for the local view,
and is the mouse
alternative for the
PAD/ key. With the
following icon you
can switch between
orthogonal, perspec-
tive, and camera
views (keys PAD5
and PAD0).

 The next button
along toggles be-
tween the top, front,
and side views.
SHIFT selects the
opposite view, just
as it does when you
use the keypad.

 This button
switches between
different methods
of drawing objects.
You can choose from
a bounding box, a
wireframe, a faced,
a gouraud-shaded,
and a textured view.

 With these icons you can translate and zoom the view with a LMB click
 on the icon and a drag of the mouse.

 This overview should provide you with an idea of how to look around in 3D-scenes.

4.11. Selecting of Objects

 Selecting an object is achieved by clicking the object using the right mouse button
(RMB). This operation also de-selects all other objects. To extend the selection to
more than one object, hold down SHIFT while clicking. Selected objects will change
the color to purple in the wireframe view. The last selected object is colored a lighter
purple and it is the active object. Operations that are only useful for one object, or
need one object as reference, always work with the active object.

 Objects can also selected with a `border’. Press BKEY to action this, and then draw
a rectangle around the objects. Drawing the rectangle with the LMB selects objects;
drawing with RMB deselects them.

 I

47 chapter 3 :: Introduction to 3D and the Game Engine

I

48 Introduction to 3D and the Game Engine :: chapter 3

 Selecting and activating
 Blender makes a distinction between selected and active .

 Only one Object can be active at any time, e.g. to allow visualization of data in
buttons. The active and selected Object is displayed in a lighter color than other
selected Objects. The name of the active Object is displayed in the InfoHeader.

 A number of Objects can be selected at once. Almost all key commands have an
effect on selected Objects.

 A single RMB click is sufficient to select and activate an Object. All other Objects
(in the visible layers) are then de-selected in order to eliminate the risk of key
commands causing unintentional changes to those objects. All of the relevant
buttons are also drawn anew. Selections can be extended or shrunk using
SHIFT+RMB. The last Object selected (or deselected) then becomes the active
Object. Use Border Select (BKEY) to more rapidly select a number of Objects at one
time. None of the Objects selected using this option will become active.

4.12. Copying and linking

 Blender uses a object oriented structure to store and manipulate the objects and
data. This will affect the work with Blender in many places. For example, the copying
of objects or the use of Blender Materials.

 In this structure an object can have its own data (in case of the Blender Game
Engine Polygon-Meshes) or share this Mesh with more other objects.

 So what is the advantage of that system?

 1. Reduced size of the scene in memory, on disk or for publishing on the web

 2. Changes on the ObData inherits to all Objects on the same time. Imagine
you decide to change a house objects you have 100 times in your scene or
changing the Material properties of one wall

 3. You can design the logic and gameplay with simple place-holder objects
and later swap them against the finished objects with a click of the mouse

 4. The shape of objects (the MeshData) is changeable at runtime of the game
without affecting the object or its position itself

 Copy
 The copy operation you are familiar with from other applications makes a true
duplicate of the selected objects. Copying is done fastest with the keycommand
SHIFT-D or also with the “Duplicate” entry in the Edit-Menu.

 Linked Copy
 A linked copy is achieved by using the ALT-D key command. Unlike copying with
SHIFT-D, the mesh forming the object is not duplicated, but rather linked to the new
objects.

 I

47 chapter 3 :: Introduction to 3D and the Game Engine

I

48 Introduction to 3D and the Game Engine :: chapter 3

 User Button

 Another common method to create and change links and Blender interface element
is the UserButton . This MenuButton allows to change links by pressing and holding
the left mouse on it and choose a link from the appearing menu. If there are more
possibilities than the Menu can hold, a DataBrowseWindow is opened instead.

 If an Object has more than one user, the UserButton will be blue and a number
indicates the number of users (in the above image three). Selecting this number will
make a copy of the Data and makes the object “Single User”.

 Linking

 To link Data from the active to the selected Objects
can be done with the key command CTRL-L. A
menu will ask what data you want to link. This
way you can choose to link the objects between
scenes, or link Ipos (animation curves), MeshData
or Materials.

Figure 4-10. Object visualisation in the OOPSWindow

 The object-structure created by copy or linking actions can be visualized in the
OOPSWindow SHIFT-F9. Here, the object “Linked” was copied two times with ALT-
D and you can see that all three objects (Blender automatically generates unique
names by appending numbers) are linked to the same MeshData “Plane_linked”. The
object “Copied” was copied with SHIFT-D resulting in two objects with their own
MeshData.

4.13. Manipulating Objects

 Most actions in Blender involve moving, rotating, or changing the size of certain
items. Blender offers a wide range of options for doing this. See the 3DWindow
section for a fully comprehensive list. The options are summarized here.

 I

49 chapter 3 :: Introduction to 3D and the Game Engine

I

50 Introduction to 3D and the Game Engine :: chapter 3

 Grab
 GKEY, Grab mode. Move the mouse to translate the selected items, then press
LMB or ENTER or SPACE to assign the new location. Press ESC or RMB to cancel.
Translation is always corrected for the view in the 3DWindow.

 Use the middle mouse button to limit translation to the X, Y or Z axis. Blender
determines which axis to use, based on the already initiated movement.

 RMB and hold-move. This option allows you to select an Object and immediately
start Grab mode.

 Rotate
 RKEY, Rotation mode. Move the mouse around the rotation center, then press LMB
or ENTER or SPACE to assign the rotation. Press ESC to cancel. Rotation is always
perpendicular to the view of the 3DWindow.

 The center of rotation is determined by use of these buttons
 in the 3DWindowheader. The left-most button rotates around the
center of the bounding box of all selected objects. The next button uses the median
points (shown as yellow/purple dots) of the selected objects to find the rotation
center. The button with the 3DCursor depicted on it rotates around the 3DCursor.
The last button rotates around the individual centers of the objects.

 Scale
 SKEY, Scaling mode. Move the mouse from the rotation center outwards, then press
LMB or ENTER or SPACE to assign the scaling. Use the MiddleMouse toggle to limit
scaling to the X, Y or Z axis. Blender determines the appropriate axis based on the
direction of the movement.

 The center of scaling is determined by the center buttons in the 3DHeader (see the
explanation for the rotation).

 While in scaling mode, you can mirror the object by pressing XKEY or YKEY to
mirror at the x- or y-axis.

NumberMenu

 To input exact values, you can call up the
NumberMenu with NKEY. SHIFT-LMB-click to
change the buttons to an input field and then
enter the number.

 I

49 chapter 3 :: Introduction to 3D and the Game Engine

I

50 Introduction to 3D and the Game Engine :: chapter 3

 EditMode
 When you add a new object with the Toolbox, you are in the so-called EditMode.
In EditMode, you can change the shape of an Object (e.g. a Mesh, a Curve, or Text)
itself by manipulating the individual points (the vertices) which are forming the
object. Selecting works with the RMB and the BorderSelect BKEY also works to
select vertices. For selecting more vertices there is also CircleSelect, called by
pressing BKEY-BKEY. “Painting” with the left mouse button selects vertices, painting
with the middle button deselects.

 While entering EditMode, Blender makes a copy of the indicated data. The hotkey
UKEY here serves as an undo function (more accurately it restores the copied data).

 As a reminder that you are in EditMode, the cursor shape changes to that of a cross.

3 chapter 1 :: Quickstart 4 Quickstart :: chapter 1

3 chapter 1 :: Quickstart 4 Quickstart :: chapter 1

Chapter 1. Quickstart

 Figure 1-1. Calli going mad...

 Have you ever wanted to personalize a computer game? Well, many game level
editors will give you that possibility, but Blender goes a step further, by allowing you
to create a completely new game.

 In this quick-start chapter, I will show you how to map a face onto a game character.

 The game character used here was made by Reevan McKay. You can read more
about this in Chapter 22, which will show you many other things about character
animation.

 In Figure 1-1 you can see an image of an real-time 3-D animation created using the
method which will be briefly described in this chapter. The scene is on the CD and
called

 Tutorials/Quickstart/CalliGoingMad1.blend.

 This quick-start tries to be as self-contained as possible. Although it is good if you
already know something about graphics, if you follow the instructions step-by-step
all should go well.

 Note: If you have not installed Blender yet, please do so. The installation process is
described in Section 29.1. Further hints about graphics hardware are given in Section 29.2.

1.1. Simple face mapping

 This section will show how to put a new face onto a ready-made character, there are
some drawbacks to this method but it will get you started quickly.

5 chapter 1 :: Quickstart 6 Quickstart :: chapter 1

 Start Blender by double clicking its icon. It will open a screen as shown in Figure 1-2.

Figure 1-2. Blender just after starting it

Locate the file menu on the top left of the screen and
choose “Open” by clicking it with the left mouse button
(LMB). A big FileWindow appears which is used for all
Blender loading and saving operations.

5 chapter 1 :: Quickstart 6 Quickstart :: chapter 1

Figure 1-3. Blender FileWindow

 The button labeled with a “P” at the upper left corner of the FileWindow puts you
one directory up in your path. The MenuButton below brings you back to the last
directories you have visited, as well as your mapped drives in Windows. Click and
hold it with the left mouse button to change to your CDROM.

 Now enter the directory Tutorials/Quickstart/ and click with the left mouse on
Facemapping_00.blend. Confirm your selection by clicking “LOAD FILE” at the top
right of the FileWindow. Blender will load the file needed for the tutorial.

Note: Please have a look at Section 4.1 for a explanation on how we will call interface
elements and keyboard shortcuts (i.e. PKEY) in the tutorials.

 To have a quick look what this file is about, press CTRL-RIGHTARROW. The window
layout changes to a bigger view of the character. Now press PKEY and the game
engine will start. Using the controls from Table 1-1 walk around to have a closer look
at the character.

Table 1-1. Quick-start controls

Controls/Keys Description

WKEY Move forward

DKEY Move left

AKEY Move right

SKEY Move backwards

CTRL Shoot

SPACE Duck

 Stop the game engine by pressing ESC when you have seen enough. Press CTRL-
LEFTARROW to return to the window layout which we will now use to map a
different face.

7 chapter 1 :: Quickstart 8 Quickstart :: chapter 1

 Move your mouse cursor over the left window with the 3-D view of the head and
press FKEY. This will start the so-called “FaceSelectMode”, which is used to manage
and change textures on objects.

 All polygons which belong to the face are now outlined and you can see them also
in the right view showing the 2-D texture image of the face. This procedure is called
mapping and will make the 2-D image appear where we want it on the 3-D object.

Figure 1-4. 3-D head and 2-D facemap

 Locate the “Load” Button in the right ImageWindow and click it
with the left mouse button. A FileWindow (in this case an ImageFileWindow) will
open and lets you browse through your harddiscs and the CDROM again. Go to the
directory Tutorials/Quickstart/textures/. The ImageFileWindow displays little
thumbnail images to ease the choice of images (see Figure 1-5).

Tip: You can also choose a picture of you or an other person. But if you are a beginner,
I would suggest to use the supplied image for your first attempt. Blender can read and
write Targa (*.tga) and JPEG (*.jpg) which are both common fileformats.

7 chapter 1 :: Quickstart 8 Quickstart :: chapter 1

Figure 1-5. ImageFileWindow

 Click on the image Carsten.jpg (yes, its me, your tutorial writer) and click the
“Load” Button on the top right of the ImageFileWindow to load it. The image will
immediately appear in the 3-D view to the left.

Info: Depending on your screen resolution you may need to zoom the right ImageWindow
out a bit. Use the PAD- and PAD+ keys for zooming.

 The dimensions of my ugly face don’t fit the previous mapping, so it’ll look a bit
distorted. Also, the color may not match exactly, making it look like a cheap mask.

 Now move your mouse over the ImageWindow on the right and press AKEY, this
selects (yellow color) all the control points here, called vertices in Blender. Now
press GKEY and move your mouse, and all vertices will follow and you can watch
the effect on the 3DView. Try to position the vertices in the middle of the face, using
the nose as a reference. Confirm the new position with the left mouse button. If you
want to cancel the move, press the right mouse button or ESC.

Info: To have a better look at the head in the 3DView, you can rotate the head around
using the middle mouse button (if you are using a 2 button mouse, hold ALT and use the
left mouse button) and moving the mouse.

 To refine the placement of the texture on the head, you may now need to move
the vertices more. Move your mouse over the ImageWindow on the right and press
AKEY to de-select all vertices (they will turn purple). Now press BKEY. This will
start the BorderSelect, and a crosshair will appear. Press and hold the left mouse
button to draw a rectangle around vertices you want to select and release the mouse
button. Now you can move these vertices by pressing GKEY and using the mouse.
Press LMB to confirm the move. Control the effect by watching the head on the
3DView.

9 chapter 1 :: Quickstart

Info: Don’t give up too soon! Mapping a face needs practice, so take a break and play with
the games on the CD, and try again later.

 If you want to look at your creation, switch to the full screen scene by pressing
CTRL-RIGHTARROW and start the game engine with PKEY.

1.2. Using 2-D tools to map the face

 This part of the tutorial will give you a brief guide on how to use a 2-D painting
program to montage a face into the facemap. You should know how to work with
layers in your application (if not please consult the documentation of your image
editing program). I use the free software (GPL) GIMP (http://www.gimp.org/) but of
course any other image manipulation programs (which supports layers) will do.

 1. Load the image swat-face.tga and the face you want to use in your paint
 program.

 2. Place the new face in a layer below the “swat-face.tga” and make the upper
 layer slightly transparent so that you can see the new face shining through.

10 Quickstart :: chapter 1

 3. Scale and move the layer containing the new face so that it fits to the
 “swat-face.tga” layer. Use the eyes, mouth and the nose to help you match
 them up. Also try to match the colors of the layers using the color tools of
 your 2-D program.

 4. Make the upper layer non transparent again

 5. Now use the eraser from your 2-D paint program to delete parts of the
 upper layer, the new face will appear at these points. Use a brush with soft
 edges so that the transition between the two layers is soft.

 6. Collapse the layer to one and save the image as a Targa (*.tga) or JPEG
 (*.jpg) image. Maybe do some final touch-ups on the collapsed image,
 like blurring or smearing areas of transition.

 Now load the scene Facemapping_00.blend from the CD. Press FKEY with your
mouse over the 3DView on the left to enter FaceSelectMode.

 Move your mouse to the right over the ImageWindow and click on the “Replace”
button this time. This will replace the current texture in the whole file with your self-
made texture. Find the map with your face on your disk, select it with the left mouse
button and press “Load” in the ImageFileWindow. The new texture will now appear
on the head.

 Switch to the full screen again (CTRL-RIGHTARROW) and test the scene by starting
the game engine with PKEY.

 II

53

II

54part II

 II

53

II

54

 Using the „Pumpkin-Run“ example file, most of the core techniques for making a 3D
game will be explained and illustrated. However, we can‘t make you a professional
game designer in a few pages, or even with a complete book. But you can learn the
basics here and have fun at the same time! You are also encouraged to experiment
and play with Blender.

Things you will learn here:
• Loading and saving Blender scenes

• Manipulating objects and navigating in the scene

• Basic Texture mapping

• Playing interactive 3-D in Blenders integrated 3-D engine

• Adding interactivity to control game elements

• Camera control and lights

• Object animation

• Adding and using sound

 And there is more! Many things will be covered in later chapters. But don’t despair
the most important thing is the gameplay. Even technically simple games can be
entertaining for long times (“Tetris” for example). So concentrate on making the
game fun for others or just enjoy creating stuff yourself!

Advanced topics covered by later chapters
• Character animation the art of bring computer models to life. This complex
 topic demands many different capabilities from the game designer. This
 includes texturing, modeling, animation, good knowledge of natural motions
 etc.

• Special effects like bullets, explosions and similar things.

• Overlay interfaces and multiple scenes.

• Python scripting to simplify complex game logics. Python is a modern and
 efficient scripting language, which is integrated into Blender. Complex things
 can often be simplified with a few lines of Python.

part II

 II

55 chapter 5 :: Modeling an environment

II

56 Modeling an environment :: chapter 5

Chapter 5. Modeling an environment
 Start Blender by clicking its Icon. Blender will start with its default scene as shown
in Figure 5-1.

Figure 5-1. Blender just after starting it

 The big window is the 3DWindow, our window to the world of 3-D inside Blender
scenes. The pink square is a simple plane, drawn in wireframe. We are currently
looking onto the scene from above, a so called “TopView”. The triangle is the
representation of a Blender Camera.

 Now move your mouse cursor over the Camera and press your right mouse button,
this selects the Camera.

Info: Blender uses the right mousebutton (RMB) for selecting objects!

 Now we will change the view of the scene. Move the mouse cursor into the big
3DWindow and press and hold the middle mouse button (MMB) and move the
mouse to rotate the view.

Tip: Blender is designed to work best with a three buttons mouse. However, if you have
only a two buttons mouse you can substitute the middle mouse button by holding ALT
and the left mouse button (ALT-LMB).

 Now return to the TopView of the scene by pressing PAD-7. These actions should
give you a basic idea of how navigating in the 3-D space through a 2-D window
works. More can be read on this topic in Section 4.10.

 Select the plane again by pressing RMB with your mouse over it. The plane will be
drawn in pink when your selection has been successful. We will now change the
plane by scaling it.

 II

55 chapter 5 :: Modeling an environment

II

56 Modeling an environment :: chapter 5

Figure 5-2. Scaling info in the 3DWindow Header

 Move the mouse over the selected plane, press SKEY, and move the mouse. You can
see that the plane changes its size according to your mouse moves. Now hold CTRL
while moving the mouse. The scale will only change in steps of 0.1. Scale the plane
until the size is 10.0 for all axes. To do so look at the scaling information in the bar
below the 3DWindow (see Figure 5-2) then press the left mouse button to finish the
scaling operation.

Info: If you can’t scale to 10.0 or want to stop the scaling action, press RMB or ESC.
Furthermore, ESC will abort every Blender procedure without making any changes to your
object

Figure 5-3. Splitting a window

 I will now show you how to customize the Blender
screen, and especially, the window layout. Move your
mouse slowly over the lower edge of the 3DWindow
(see Figure 5-3) until it changes to a double arrow. Now
press the MMB or RMB, a menu will appear:

 Click on “Split Area”. Move the appearing line to the
middle of the 3DWindow and press LMB, Blender splits
the 3DWindow into two identical views of the 3-D scene.

 Move your mouse over the right window and press SHIFT-F10. The window will
change to an ImageWindow this is the place in Blender to work with images and
textures, which will color our real-time models.

Info: All keypresses in Blender will be executed by the active window (that is the window
with the mouse over it). There is no need to click a window to activate it.

 Move your mouse back to the plane in the left 3DWindow and select it again in case
it is not selected anymore (i.e. not pink). Now press ALT-Z, the plane is now drawn in
solid black. Press FKEY and the plane will turn white, the edges are drawn as dotted
lines. With FKEY, we just entered the so called FaceSelectMode, used for selecting
face and applying textures to models.

 Move your mouse to the right window and locate and press the “Load” Button with
LMB.

Figure 5-4. Thumbnail images in the ImageFileWindow

 An ImageSelectWindow (Figure 5-4) opens.

 Pressing and holding the MenuButton with the left mouse button (LMB) will give
you a choice of recently-browsed paths and, on Windows operating systems, a list of
your drives.

 The directory you are currently in, is shown in the top text-field. The ParentDir
button allows you to go up one directory.

 Using these methods, go to your CD-ROM drive and browse for the folder
Tutorials/Pumpkinrun/textures/ and locate the concgray_q.jpg thumbnail.
Click on it with the left mouse button and then choose “Load” from top right of the
ImageSelectWindow.

Figure 5-5. Textured plane in 3DWindow

 The texture now shows up in the 3DWindow to the left. If you see some strange
colors in the texture, press CTRL-K over the 3DWindow. Now leave FaceSelectMode
by pressing FKEY.

 We have just created a very simple environment, but we used many of the steps
needed to create more complex game levels.

 It is now time to save your scene. To ease the process we will include the texture in
the saved scene. To do so, choose “Pack Data” from the Tools-Menu. A little parcel-
icon will appear in the menu bar to indicate that this scene is packed. Now use the
FileMenu to browse to your harddisk (as described above), enter a name in the
filename field (currently “untitled.blend”) and click the “SAVE FILE” Button in the
FileWindow. You can read more about saving and loading in Section 4.3.

 II

57 chapter 5 :: Modeling an environment

Chapter 6. Appending an object from an
other scene
 Because we can’t cover modeling and the general use of Blender as a tool to create
whole worlds, we load ready-made objects. In fact, there is no special file-format in
Blender to store objects, so all scenes can be used as archives to get objects from.
So you can browse and re-use all the nice scenes on the CD-ROM.

Figure 6-1. The hero!

 Move your mouse over the ImageWindow (the right one from the last step) and
press SHIFT-F5 to change it to a 3DWindow. We now go into some action and need
more views into 3-D space.

 Press SHIFT-F1 with your mouse over one of the 3DWindows, a FileWindow will
appear in “Append” mode (see Figure 6-2), which allows us to load any Blender
object from a scene into the current scene.

Info: You can also use the FileMenu of Blender to access the Append function, but mostly a
shortcut is faster.

Figure 6-2. FileWindow in append mode

II

58 Appending an object from an other scene :: chapter 6

 II

59 chapter 6 :: Appending an object from an other scene

II

60 Start your (Game) Engines! :: chapter 7

 Pressing and holding the MenuButton with the left mouse button (LMB) will give
you a choice of recently browsed paths and, on Windows operating systems, a list of
your drives.

 The directory you are currently in is shown in the top text-field. The ParentDir
button allows you to go up one directory.

 Using these methods, go to your CD-ROM drive and browse for the folder
Tutorials/Pumpkinrun/. Now click with the left mouse button (LMB) on the
filename “Pumpkin_Solo.blend”. The file will be opened immediately.

Figure 6-3. Browsing in a *.blend file

 When you have entered the file, the FileWindow will present you all the parts of
the scene like in a file-browser. Now click on “Objects” with LMB. You will see the
objects contained in that scene (see Figure 6-3). Select all objects by pressing AKEY.
Confirm by pressing ENTER or clicking with LMB on the “LOAD LIBRARY” button.

Figure 6-4. The pumpkin in TopView after loading it into the environment

 You can now see the pumpkin as an orange spot, sitting in the middle of the plane in
the left 3DWindow.

 Switch the right window to a second 3DWindow by pressing SHIFT-F5 with the
mouse over the window. You will get the same TopView as in the left 3DWindow but
drawn in Wireframe.

 We appended a Camera together with the objects we did append. Now select the
Camera closer to the pumpkin with RMB. This is best done in the wireframe view.
Move your mouse back to the left (textured) 3DWindow and press CTRL-PAD0. This
changes the camera to the selected one and gives a nice view of the character.

 II

59 chapter 6 :: Appending an object from an other scene

II

60 Start your (Game) Engines! :: chapter 7

Chapter 7. Start your (Game) Engines!
 We can now start the Blender game engine already! While pointing with the mouse
over the CameraView, press PKEY and you can see the pumpkin on our textured
ground. The pumpkin character has an animated candle inside and you will see it
flicker. To stop the game engine and return to BlenderCreator press ESC.

 I hear you saying “That’s nice, but where is the animation?” Well, give me a minute.

 Move your mouse over the right 3DWindow and press PAD3 to get a view from
the side. Zoom into the view by pressing PAD+ a few times or hold CTRL-MMB and
move the mouse up, which will give you a smooth zoom. You also can move the view
with the MMB and mouse movements while holding SHIFT. This way we prepare the
view to move the pumpkin up.

 Select the character with the RMB (click somewhere on the wireframe of the
pumpkin), and it will turn pink to indicate that it is selected.

 We will now enter the main command center for interactive 3-D in Blender. To do so
press F8 or click the RealtimeButtons icon in the iconbar.

Figure 7-1. The RealtimeButtons

 Locate the “Actor” button on the left in the RealtimeButtons and click it with the
LMB. This makes our character in essence an actor. Two more buttons appear, so
click on the “Dynamic” button. This changes the object in such a way that it reacts
to physical properties, like gravity, bounce or forces applied to it. We won’t take any
notice of the bunch of buttons which appeared while clicking “Dynamic” for now.

 If you now start the game engine you will not see much difference, but we will
change that in a minute.

 Zoom the right 3DWindow out a bit (do you remember? Use CTRL-MMB or PAD+/
PAD- to zoom). Make sure that the pumpkin is still selected (pink, if not then click
it with RMB), press GKEY over the right 3DWindow and move the mouse. The
character will follow your mousemovements in the 3DWindow. The GKEY starts the
so called “GrabMode” which allows you to move objects within the 3-D space.

 II

61 chapter 7 :: Start your (Game) Engines!

II

62 Interactivity :: chapter 8

Figure 7-2. SideView after moving the pumpkin up

 Move the object straight up until it disappears on the top of the CameraView (left
3DWindow) and confirm the new position with LMB. If you are unsure you can
always cancel the operation with ESC or RMB and try again.

 Now move the mouse to the left 3DWindow (the CameraView) and press PKEY to
start the game engine. The Pumpkin falls and bounces nicely until it rests on the
ground. Press ESC to exit the game engine

 II

61 chapter 7 :: Start your (Game) Engines!

II

62 Interactivity :: chapter 8

Chapter 8. Interactivity
 The RealtimeButtons (F8) are logically divided into four columns. We have already
used the leftmost column to set up the object parameters to make the pumpkin fall.
The three right columns are used for building the interactivity into our game.

 So lets move the pumpkin at our request.

 The columns are labeled as “Sensors”, “Controllers” and “Actuators”. You can
think of Sensors as the senses of a life form, the Controllers are the brain and the
Actuators are the muscles.

 Press the “Add” button once for each row with the left mouse button to make one
LogicBrick for the Sensors, Controllers and Actuators (see Figure 8-1).

Figure 8-1. Newly-created LogicBricks

 The types of the added LogicBricks are nearly correct, for our first task, only the first
one needs a change. Press and hold the MenuButton now labeled with “Always” and
choose “Keyboard” from the pop up menu (see Figure 8-2).

Figure 8-2. Changing the LogicBrick type

 Now LMB click into the “Key” field of the Keyboard Sensor. The text “Press any
key” appears. Press the key you want to use to move the player forward (I suggest
UPARROW).

 Now have a closer look at the Motion Controller. We will now define how the player
should move. The first line of numbers labeled “Force” defines how much force will
be applied when the Motion Controller is active. The three numbers stand for the
forces in X, Y, and Z-Axis direction.

 II

63 chapter 8 :: Interactivity

II

64 Interactivity :: chapter 8

 If you look closely at the wire frame view of the player you can see that the X-axis
is pointing forward on the player. So to move forward we need to apply a positive
force along the X-axis. To do so, click and hold on the first number in the “Force”
row with the left mouse. Drag the mouse to the right to increment the value to 80.00.
You can hold the CTRL key to snap the values to decadic values. Another way to
enter an exact value is to hold SHIFT while clicking the field with the left mouse. This
allows you to enter a value using the keyboard.

 Having nearly created the configuration shown in Figure 8-3, we now need to “wire”
or connect the LogicBricks. The wires will pass the information from LogicBrick to
LogicBrick, i.e. from a Sensor to a Controller.

Figure 8-3. LogicBricks to move the player forward

 Click and hold the left mouse button on the yellow ball attached on the Keyboard
Sensor and drag the appearing line to the yellow ring on the AND Controller. Release
the mouse and the LogicBricks are connected. Now connect the yellow ball on the
right side of the AND Controller with the ring on the Motion Controller.

 To delete a connection, move the mouse over the connection. The line is now drawn
highlighted and can be deleted with an XKEY or DEL key-press.

Tip: Always name your Objects and LogicBricks, this will help
you to find your way through your scenes and refer to specific
LogicBricks later. To name a LogicBrick click into the name
field with LMB (see figure above) and enter the name with the
keyboard. However, Blender will name objects and LogicBricks
automatically with generated unique names like “sensor1”,
“sensor2” or “act”, “act1” etc., so you don’t have to fear about
name-collisions.

 Now press PKEY to start the game engine and when you press the UPARROW key
briefly, the player moves towards the camera.

 To make the movement more interesting, we can now add a jump. To do so enter
a 20.0 in the third (z-Axis, up) field of the Motion Controller. If you try it again in the
game engine, you can see that there is a problem: If you hold the key pressed, the
pumpkin will take off into space. This is because you also apply forces when in the
air.

 To solve this we have to ensure that the forces only get applied when the pumpkin
touches the ground. That’s where the Touch Sensor kicks in. Add a new Sensor by
clicking on “Add” in the Sensors row. Change the type to “Touch” like you did for the
Keyboard Sensor (see Figure 8-2).

 Wire the Touch Sensor to the AND Controller. Now the Keyboard and the Touch
Sensor are connected to that controller. The type “AND” of the controller will only
trigger the Motion Actuator when the key is pressed AND the player touches the
ground. This is an easy way to add logic to your interactive scenes. As well as the

 II

63 chapter 8 :: Interactivity

II

64 Interactivity :: chapter 8

AND Controller there are also OR, Expression and Python (Blender’s scripting
language) and Controllers which all offers more flexibility to make your game-logic.

Tip: At this moment, space in the RealtimeButtons can get sparse. But besides changing
the window layout we also can collapse the LogicBricks. To do so press the little orange
arrow right beneath the brick’s name (so that you are still able to see the connections,
though the content is hidden).

 To make the movement more dynamic, we will now add LogicBricks to make the
pumpkin jump constantly. Add a new Controller and a new Actuator by clicking
“Add” in the appropriate row. Name the new Actuator “AlwaysJump”. Wire the
Touch Sensor with the new AND Controller input and the output of the Controller to
the new Motion Actuator “Always Jump”.

Figure 8-4. LogicBricks for adding a constant jump

 Yes, not only one Controller can be connected to two Sensors, a sensor can also
“feed” two or more controllers. Start the game again with PKEY, the pumpkin jumps,
UPARROW moves it forward.

 More control
 Now we add more LogicBricks to steer the player with the Cursorkeys.

 Add a new Sensor, Controller and an Actuator by clicking on the “Add” Buttons.
Change the Sensor type to “Keyboard” with the MenuButton. Don’t forget to
name the LogicBricks by clicking on the name field in the bricks. Wire the Sensor
(“LeftArrow”) with the Controller (“pass2”) and the Controller output with the
Actuator (“Left”)

Figure 8-5. LogicBricks to steer the player

 Enter “10.0” in the third field (Z-axis) in the “Torque” row. Torque is the force that
turns the object. In this case it will turn the actor around its longitudinal axis. Try the
change in the game engine, the pumpkin will turn left when you press LEFTARROW.
Repeat the steps but change it to turn right. To do so use RIGHTARROW and enter a
torque of “-10.0”. See Figure 8-5.

 II

65

II

66

Chapter 9. Camera control
 In this folowing section, I will show you how to set up a camera which follows the
actor, trying to mimic a real cameraman.

 Move your mouse over the right 3DWindow (the wire frame view) and zoom out
with PAD- or CTRL-MMB movements. Locate the second camera (the one further
away from the player) and select it with RMB. With your mouse over the left,
textured 3DWindow press CTRL-PAD0, this will change the view to the selected
camera.

 The view is now a bit strange because the camera lays exactly in the ground plane.
Move your mouse above the right 3DWindow and press GKEY to enter the grab
mode. Move your mouse up a bit until the pumpkin is approximately in the middle of
the camera-view.

 Ensure that the RealtimeButtons are still open (F8). Now
add a Sensor, Controller and an Actuator as you learned
above. Wire the LogicBricks and Change the Actuator
into a Camera Actuator. The Camera Actuator will follow
the Object in a flexible way which gives smooth motions.

Figure 9-1. Logic Brics for the following camera

 Click the “OB:” field in the Camara Actuator and enter the name of the pumpkin
object, here “Pump”. The camera will follow this object. Click and hold the “Height:
” field with the LMB and move the mouse to the right to increase the value to about
4.0. This is the height the camera will stay at.

Tip: Holding CTRL while adjusting a NumberButton will change the value in stages making
it easier to adjust the value. SHIFT-LMB on a NumberButton lets you use the keyboard to
enter values.

 The Min: and Max: fields determine the minimal and maximum distance the camera
will get to the object. I chose “Min: 4.0” and “Max: 6.0”. Start the game engine to
test the Camera Actuator. Experiment a bit with the values.

chapter 9 :: Camera control

 II

65

II

66

Chapter 10. Real-time Light
 Real-time lighting in Blenders game engine is performed by the OpenGL subsystem
and takes advantage of hardware accelerated transform and lighting (“T&L”) if your
graphics card provides it.

 Place the 3DCursor with LMB in the right 3DWindow approx. 3 grid units
above the cameras. Use the Toolbox (SPACE), ADD Lamp.

 Watch the effect on the pumpkin in the left textured
view, while adding the lamp. For reference, the left
pumpkin in Figure 10-1 is lit, the right one is not.
Try to move the light around in the 3DWindows
(make sure that the light is selected (pink, use RMB
to select) and press GKEY), so you can see that the
textured view gets updated in real-time. Moving
the light under the pumpkin gives a scary look, for
example.

Figure 10-1. Adding a light to the scene

Info: The real-time lighting in Blender doesn’t cast shadows. The shadow of the pumpkin
is created differently. Also, bear in mind, that real-time lights cause a slowdown in your
games. So try to keep the number of objects with real-time light as low as possible.

 More options for lamps and real-time lighting are covered in Section 26.7.

 Real-time light :: chapter 10

 II

67

II

68

Chapter 11. Object Animation
 Here I will cover the basics of combining Blenders animation system with the game
engine. The animation curves (Ipos) in Blender are fully integrated and give you full
control of animations both in conventional (linear) animation and in the interactive
3-D graphics covered by this book.

 Use SHIFT-F1 or use the FileMenu “Append”. Browse to book-CD, choose
Tutorials/Pumpkinrun/Door.blend, click on Object, select all objects with AKEY,
confirm with ENTER. This will append a wall with a wooden door to the scene. The
pumpkin will bump against the walls and the door. The collision detection is handled
by the Blender game engine automatically.

 Switch the right 3DWindow to a TopView (PAD7) and zoom (PAD+ or PAD-) as
needed to see the appended door completely. The door has the name and the axis
enabled, so it should be visible. Select the door with RMB (it will turn pink).

 We will now make a simple key frame animation:

1. Ensure that the FrameSlider (the current animation frame)
is at frame 1 by pressing SHIFT-LEFTARROW

2. IKEY, select “Rot” from the menu

3. Now advance the animation time by pressing CURSORUP
five times to frame 51. With the game engine playing 50
frames per second our animation will play now 2 seconds.

4. Press RKEY (be sure to have your mouse over the
TopView) and rotate the door 150° clockwise. You can see the
degree of rotation in the Header of the 3DWindow. To make it
easier to rotate exactly, hold CTRL while rotating.

5. Now insert a second key by pressing IKEY and again
choosing “Rot”

6. Move to frame 1 by pressing SHIFT-LEFTARROW and
press SHIFT-ALT-A, you will see the animation of the door
being played back. After 51 frames the animation will run to
frame 250 and then repeat.

7. Press ESC to stop the playing animation.

chapter 11 :: Object Animation

 II

67

II

68

Figure 11-1. Rotating the door

 With the door still selected switch the
ButtonsWindow to the RealtimeButtons,
by pressing F8. Add a Sensor, Controller
and Actuator, wire them, name them
(see Chapter 8), change the Sensor
to a Keyboard Sensor and change the
Actuator to “Ipo” type.

 Change the type of the Ipo Actuator to “Ping Pong” mode using the MenuButton.
SHIFT-LMB “Sta” and change the value to “1”, then change “End” to “51” (see
Figure 11-2). This way the Ipo Actuator plays the door animation from frame 1 to 51
which opens the door. A new invocation of the Ipo Actuator will then close the door
(because of playing it “Ping Pong”).

Figure 11-2. LogicBricks for playing an Ipo in “Ping Pong” mode

 Play the scene (PKEY) in the textured view, and the door will now open and close
when you press SPACE and can push the actor around if he gets hit by the door.
To visualize the animation curves (Ipos) switch one window to an IpoWindow by
pressing SHIFT-F6, see Section 24.2.

 Object Animation :: chapter 11

 II

69

II

70

Chapter 12. Refining the scene
 You may have noticed there is currently a problem in the file: The actor can climb
the wall because we can jump on every touch of any object even on a wall.

 Select the pumpkin and look at the Touch Sensor, the “MA:” field is empty. “MA:
” stands for a material name. If you fill in a material name here, the Touch Sensor
will only react to objects with this material. In our scene this would be the ground
we created at the beginning. But what is the material name? In fact we have not
defined a material. To make things easier we will once again make use of the ability
to append ready-made elements from a different Scene (see Chapter 6).

 Press SHIFT-F1 whilst with your mouse over one of the 3DWindows, a FileWindow
will appear in “Append” mode, which allows us to load any Blender object into
an open scene. Go to your CD-ROM drive and browse for the folder “Tutorials/
Pumpkinrun/” containing the file “GroundMaterial.blend”. Now click with the
middle mouse button (MMB) on the filename “GroundMaterial.blend”. The file will
be opened immediately. Alternatively, you can click with the left mouse button
(LMB) and then confirm your selection with ENTER.

Figure 12-1. Browsing the GroundMaterial

 When you have entered the file, the FileWindow will show you all the parts of the
scene like in a file-browser. Now click with LMB on “Material”, you will see the
Materials contained in that scene (Fig. Figure 12-1). Select the “Ground” material
with RMB and click “LOAD LIBRARY”.

 Back in the 3DWindow, select the ground plane and press F5 to call the
MaterialButtons. Locate the MenuButton in the ButtonsWindow Header, and

chapter 12 :: Refining the scene

 II

69

II

70

click and hold it with the left mouse button. Choose “0 Ground” from the menu. The
zero in the name tells us that there were no objects already using the material.

 Now, select the pumpkin again, switch back to the
RealtimeButtons F8 and enter “Ground” into the “MA:”
field of the Touch Sensor.

Info: Whether a name is capitalized or not makes a difference in Blender. So a Material
called “ground” is not the same as “Ground”. Blender will blank a button when you enter
an object name which does not exist. This may sound frustrating but it really helps while
debugging, because it prevents you from overlooking a simple typo.

 Try again to hop around, now you now cannot climb the wall anymore.

 One last thing: it would be nice if the door would only open when the actor is close
to it. The Near Sensor will help us here.

 Add a new Sensor to the door and change the Sensor type to “Near”. Wire it to the
existing AND Controller (see Figure 12-2). The “Dist:” field gives the distance at
which the Near Sensor starts to react to the actor. By the way, it will react to every
actor if we leave the “Property:” field empty. The “Reset: 12.0” field is the distance
between the Near Sensor and the object where the Near Sensor “forgets” the actor.
Try to make the “Dist:” setting to 4.0, now you need to come close to the door first
but then you can back up before you press SPACE to open the door without the
danger of getting hit. Now the door only opens when you press SPACE and the
pumpkin is near the door.

Figure 12-2. Near Sensor

 Refining the scene :: chapter 12

 II

71

II

72

Chapter 13. Adding Sound to our scene
 There is no game without sound, so I will show here how to add a sound to an event
in Blender.

 Locate the SoundButtons icon in the icons of the ButtonsWindow. Click it with
the left mouse button to switch to the SoundButtons. Because there is no sound
in the scene the window will be empty. Use the MenuButton (click and hold) to
choose “OPEN NEW”. A FileWindow opens, browse to get to the CD-ROM and load
DoorOpen.wav from the directory Tutorials/Pumpkinrun/samples/.

Figure 13-1. The SoundButtons with a sound loaded

 Blender is capable of creating 3-D sound (Sound located spatial in the scene) and
provides many ways to influence the sound. But for the moment we can go with the
defaults and don’t need to touch any of these buttons. Of course you can play the
sound by clicking on the big “Play” button.

 Select the door object (RMB) and switch to the
RealtimeButtons with F8. Add a new Actuator and
change the type to “Sound”. Wire it to the Controller
(see Figure 13-2). Click and hold the solitary MenuButton
in the SoundActuator and choose the sound file
“DoorOpen.wav” from the pop-up menu. As a last step
before you can try it, change the mode “Play Stop” to
“Play End” this will mean the whole sound is played
without stopping too early.

Figure 13-2. SoundActuator for the door

chapter 13 :: Adding Sound to our scene

 II

71

II

72

Chapter 14. Last words
 After this chapter you should have an idea what it is about to make a game with
Blender. We did some of the basic steps and you are now prepared to do other
tutorials or start playing with ready made scenes or your own ideas.

 I suggest that you continue with the Chapter 4, and read it at least one time so that
you know where to look when you face problems. Also don’t hesitate to use our
support, see Section 29.4.

 III

75

 III

76

 Beginner tutorials are aimed at beginners in interactive 3D graphics. We tried to
make the tutorials as self-contained as possible, but if you experience problems
please go to the Chapter 4 or use our support or the Blender Community (Section
29.4).

 In the following tutorials, we use the “hands-on” approach to give you quick results,
so make sure you follow the words and screenshots closely, and an explanation will
follow later. Of course, you are invited to do your own experiments!

 III

75

 III

76

Chapter 15. Tube Cleaner, a simple
shooting game
Figure 15-1. Tube Cleaner Title

 Tube Cleaner was designed by Freid Lachnowicz. The game is a simple shooter
game that takes place in a tube. Three kinds of enemies are present. Try to collect as
many points and bullets as you can on your way up the tube!

 To play the game in its final stage load the scene Demos/TubeCleaner.blend from
the CD. It includes instructions.

 This Tutorial is not supposed to explain how to make the full game. But you should
be able to understand the extensions in the final result with the help of this book and
this tutorial. And of course you are encouraged to change and extend the game to
your liking!

 Tube Cleaner, a simple shooting game :: chapter 15

 III

77

 III

78

Figure 15-2. Tube Cleaner game

Table 15-1. Tube Cleaner game controls

Controls Description

CURSOR KEYS rotate the cannon left, right, up and
down

SPACE Shoot

15.1. Loading the models

 Start Blender and load Tutorials/TubeCleaner/TubeCleaner_00.blend from
the CD. This scene contains all models to start. To make the scene interactive, this
tutorial will lead you through the following tasks:

 1. Adding game logic to the gun, allowing it to move up, turn and shoot

 2. Adding game logic to the enemies

 3. Creating the score system including display

 4. Providing “Extra Bullets”

chapter 15 :: Tube Cleaner, a simple shooting game

 III

77

 III

78

Figure 15-3. Wireframe TopView in the loaded Tube Cleaner scene

 The scene contains a CameraView on the left, a wireframe view (view form top,
TopView) on the right and a the RealtimeButtons on the bottom. In the TopView
(Figure 15-3) you can see the “Base” object is already selected and active (purple
color in wireframe). The “Base”-object will carry the cannon and will contain some
of the global logic of the game. The cannon itself is parented to this “Base”. This
hierarchy will make our job later easier because we won’t have to worry about
composite movements.

15.2. Controls for the base and cannon

 We start with the rotation around the vertical axis of the base. This will also rotate
the cannon and the camera because they are parented to the base.

Figure 15-4. LogicBricks to rotate the gun

 Tube Cleaner, a simple shooting game :: chapter 15

 III

79

 III

80

 Make sure that the “Base” object is selected (purple, RMB to select if not) and click
on the “Add” Buttons in the RealtimeButtons for each row of Sensors, Controllers
and Actuators. In every row a new LogicBrick will appear.

 Now link (wire) the LogicBricks by clicking and drawing a line from the little yellow
balls (outputs) to the yellow donuts (input) of the LogicBricks. These connections
will pass the information between the LogicBricks. Change the first LogicBrick to a
Keyboard Sensor by click and hold its MenuButton with the left mouse button and
select “Keyboard” from the pop up menu.

Info: Please do the tutorial in Part II in Game Creation Kit if you have problems with the
creating, changing and linking of LogicBricks.

 Now, click the “Key” field with the LMB and press the RIGHTARROW key when
prompted by “Press any key” in the Keyboard Sensor. The “Key” field now displays
“Rightarrow” and the Keyboard Sensor now reacts to this key only.

 Now change the third number in the “dRot” row of the Motion Actuator to 0.03. Do
this by using SHIFT-LMB on the number and entering the value with the keyboard.
The three fields always denote the three axis (X,Y,Z) of an object. So we will rotate
around the Z-axis.

 Now move your mouse cursor over the CameraView and press PKEY to start the
game. You should now be able to rotate the gun with the right cursorkey.

Info: You should always name your LogicBricks and other newly created elements in your
scenes (click on the default name and edit with your keyboard). This will help you to find
and understand the logic later. Take Figure 15-4 as a reference.

 Use the same procedure as above to add LogicBricks to rotate the gun to the left.
Use LEFTARROW as key in the Keyboard Sensor and enter “-0.03” in the third “dLoc”
field of the Motion Actuator.

 As you can see the space in the RealtimeButtons is getting sparse with only six
LogicBricks. Use the Icon in the LogicBricks to collapse the LogicBricks to just a
title. Now you also see another good reason to properly name LogicBricks.

15.2.1. Upwards Movement

 In „Tube Cleaner“ we want to have a continuous upwards movement within the
tube. We could achieve this similarly to the rotation of the gun, but there is another
possibility which will give us much more control over the movement and also allows
you to move down to a specific level of the tube.

 The method used here is to combine the possibilities of Blender’s game engine and
its powerful animation system. Move your mouse cursor over the CameraView and
press ALT-A, Blender will play back all the animations defined in the scene. Press
ESC to stop the playback. But so far none of these animations is played back by the
game engine. We have to tell the objects to play the animation. This way we can
interactively control animations, for example play, stop or suspend.

chapter 15 :: Tube Cleaner, a simple shooting game

 III

79

 III

80

 Move your mouse cursor over the wireframe view and press SHIFT-F6. The window
will change to an IpoWindow (see Figure 15-5), meant for displaying and editing
Blender’s animation curves. The IpoWindow is organized into axes, here the axes
are the horizontal axis, showing the time in Blender’s animation frames and the
vertical axis showing Blender units. The yellow vertical line is the animation curve
for the movement along the Z-Axis of the “Base” object, meaning upward movement
for our object. So to move the object 10 units up you can move the Ipo cursor
(green line) with a left mouse click to frame 10. The CameraView will reflect this
immediately.

Figure 15-5. IpoWindow with the animationcurve for upward movement

 To play this animation in the game engine, we use a special LogicBrick the “Ipo
Actuator”, set to “Property” type. A Property is a variable owned by a game object,
which can store values or strings. We will now create a new property which will hold
the height (zLoc(ation)) of the “Base” object. To do so click on “ADD property” in the
RealtimeButtons for the “Base” object.

 Click on “Name:” and change the default name “prop” to “zLoc”, this Property will
hold the height of the gun in the Tube.

Info: As touched on earlier, Blender uses capitalization to distinguish between names of
Objects and Properties. So “zloc” is not the same as “zLoc”.

Figure 15-6. LogicBricks for the upward movement

 Tube Cleaner, a simple shooting game :: chapter 15

 III

81

 III

82

 Continue creating the LogicBricks from Figure 15-6. The Always Sensor triggers the
logic for every frame of the game engine animation, ensuring constant movement.
The AND Controller just passes the pulses to two Actuators, both are connected to
the Controller and will be activated at the same time.

 The Ipo Actuator will play the Ipo animation according to the value in the Property
“zLoc”. To get a constant motion we increase the “zLoc” Property every frame with
the Property Actuator . Here it is from the type “Add” which adds “Value:” (here
0.01) to the “zLoc” Property. Try to change the “Value:” to get a feeling for the speed
of the animation. If you’d like to move the cannon downwards try entering -0.01 into
the “Value:” field. After experimenting a bit please use 0.01 for the value field as
shown in Figure 15-6. To play the game so far move your mouse to the CameraView
and press PKEY.

Info: Blender can show you the used Properties and their values while the game runs.
To do so, choose “Show debug properties” from the “Game” menu and activate the “D”
Buttons (Debug) for every Property you’d like to have printed on screen

15.3. Shooting

 Switch the IpoWindow back to a 3DWindow by pressing SHIFT-F5 over the
IpoWindow. Now select the “Gun” object with the right mouse. You can click
on every wire from the “Gun” object, a proper selection will be reflected in the
ButtonsWindow Header (“OB:Gun”) and in the RealTime Buttons where “Gun” will
appear in the columns for the LogicBricks.

 Now add a Sensor, Controller and Actuator to the “Gun” object and wire them as
you learned earlier in this tutorial. Change the Sensor to a Keyboard Sensor (please
name the Sensor “Space”) and choose (click the “Key” field) Space as trigger for
the gun. Change the Actuator to an “Edit Object” Actuator. The default type is “Add
Object” which adds an object dynamically when the Actuator is triggered.

Figure 15-7. LogicBricks to fire the gun

 Enter “bullet” into the “OB:” field by clicking it with LMB and using the keyboard to
enter the name. This will add the object “bullet”, a pre-made object, which is on a
hidden layer in the scene. Enter 18.00 as the second number in the “linV” fields. This
will give the bullet an initial speed. Also activate (press) the little “L” Button behind
the “linV” row. This way the bullets will always leave the gun in the direction aimed.
Enter 50 in the “Time:” field this will limit the lifetime of the bullets to 50 frames,
avoiding ricochets to bounce forever. As usual, now try to run the game now and
shoot a bit.

chapter 15 :: Tube Cleaner, a simple shooting game

 III

81

 III

82

 So far we have unlimited ammunition. To change this we again use a Property
storing the number of bullets left. Add a new Property by clicking on “ADD
property”. Name this Property “bullets” and change its type to “Int” with the
MenuButton now labeled “Float” (the standard type for new Properties). An
“Int(eger)” Property only holds whole numbers, this is ideal for our bullets as we
don’t want half bullets. SHIFT-LMB on the field to the right of the “Name:” field to
enter 10 here. This is the initial number of bullets available at the start of the game.

 To actually decrease the number of bullets on every shot we use the “Property Add”
Actuator that we also used to make the base of the cannon move up. So add another
Actuator by clicking on “Add” in the Actuator’s column of the gun. Wire it to the
AND Controller we created in the last step. Change the Actuator type to “Property”
choose “Add” as the action. Enter “bullets” in the “Prop:” field and -1 in the “Value:
” field. This will subtract 1 (or add -1) from the Property “bullets” on every shot
triggered by Space.

 So far the gun doesn’t take any notice of the number of bullets. To change this
we will use an Expression Controller which allows to add single line expressions
to process game logic. Change the AND Controller with the MenuButton to an
Expression Controller. Then click then on the “Exp:” field and enter “Space AND
bullets>0” (without the quotation marks) and press ENTER. Here “Space” is
the name (exactly as you typed it in the LogicBrick) of the Keyboard Sensor and
“bullets” is the bullets Property. The Controller now only activates the following
Actuators if the Sensor “Space” is active (meaning that Space is pressed) AND
bullets is bigger than zero. Try again to run the game, you now can only shoot 10
times. Read more about Expressions in Section 26.9.

 The last step to make the gun work is to make the bullets display functional. Select
the display (the right one with the flash on it) with the right mouse button. It is
best to hit the little dot on the “1”. The name “BulletsDisplay” should appear in the
RealtimeButtons and in its header as “OB:BulletsDisplay”. Alternatively you can
zoom into the wireframe view to make the selection easier (see Section 4.10).

 You can see in the RealtimeButtons that there is already a Property called “Text”
for the display object. The object has a special text-texture assigned which will
display any information in the Property called “Text” that is on it. You can test this
by changing the value “10” in the Property, the change will be displayed immediately
in the CameraView.

 Tube Cleaner, a simple shooting game :: chapter 15

 III

83

 III

84

 Because Properties are local to the object they are owned by, we have to find a way
to pass the value of Properties between objects. This is done inside a scene (but will
not work across scene borders) with the Property Copy Actuator.

 Add a line of LogicBricks to the “BulletsDisplay” like you did before and wire them.
Change the Actuator to a Property Actuator, type “Copy”. See Figure 15-8.

Figure 15-8. LogicBricks to display the amount of bullets

 Enter “Text” into the first “Prop:” field, this is the name of the Property we copy
into. Enter “Gun” into the “OB:” field, again watch for correct capitalization, Blender
will blank the input field if you enter a non-existing object. From this object we will
get the value. Enter “bullets” into field “Prop:” beneath “OB:” this is the Property
name from which we get the value.

 Start the game and shoot until you have no more bullets.

15.4. More control for the gun

 Tilting the gun will add more freedom in movement and dynamic to the game. We
will use a similar technique as for the movement up, by combining animation curves
and LogicBricks.

 Select the gun again, and collapse the LogicBricks by clicking their arrow icons,
this will give us more space for the coming logic.

 As for the upward movement the gun, it already contains a motion curve that we
can use. We also need a Property which contains the actual rotation (tilt, rotation
around x-axis). So add a new Property by clicking on “ADD property” and name it
“rotgun”.

 Again use the “Add” Buttons to add a Sensor, Controller and one... nope, you are
right this time two Actuators. You already know this from the upward movement.
We need one Actuator to change the Property and one to play the Ipo. Wire the new
LogicBricks, as shown in Figure 15-9. The collapsed LogicBricks are the ones you
made for shooting.

Figure 15-9. LogicBricks to rotate the gun upwards

 Change the Bricks according to Figure 15-9 and enter all the necessary information.
Using the Property Add Actuator we increase “rotgun” by one every time UpArrow

chapter 15 :: Tube Cleaner, a simple shooting game

 III

83

 III

84

is pressed and we play the Ipo according to the “rotgun” Property, this will rotate the
gun up.

 Note that I activated the pulse mode icon for the Keyboard Sensor, this will
give a keyboard repeat here, so the gun will rotate as long as you press the key
without the need to release it.

 Now test the rotation, and you will see that the gun only rotates a specific amount
and then stops. This is done with the animation curve (Ipo), you can visualize the
curve when you switch a Window to an IpoWindow with SHIFT-F6 (use SHIFT-F5 to
return to the 3DWindow). You can see that the curves go horizontally from frame 21
(horizontal axis), meaning no further rotation is possible. You also see that we need
to make the “rotgun” negative to rotate down.

Figure 15-10. Completed LogicBricks to tilt the gun

 Again add a Sensor, Controller and one (yes, this time, it’s really only one) Actuator.
Wire and name them as shown in Figure 15-10. Note that we use the Ipo Actuator for
the tilting down also. This is perfectly ok, we can save this way a LogicBrick. It would
have also been ok to use a second Ipo Actuator here.

Info: If you prefer “pilot-controls” just swap the UpArrow and DownArrow in the Keyboard
Sensors.

 There is one drawback: if you press UpArrow for too long the gun will stop rotating
but “rotgun” is still incremented. This will cause that the cannon is not rotating
back immediately when you press DownArrow again. To prevent this we can use
Expressions again, see Figure 15-11 for the correct Expressions.

Figure 15-11. Expressions to correctly stop the rotation

 These Expressions will stop changing “rotgun” when “rotgun” is already greater
than 21 or less than -21.

 Tube Cleaner, a simple shooting game :: chapter 15

 III

85

 III

86

Info: It is time to save your project now! Blender scenes are usually very compact so
saving only takes seconds. First you need to pack (include in the Blenderfi le) the textures,
use the Tools menu “Pack Data” to do so. This way you can also send the fi le to a friend
by e-mail. Then use the FileMenu or save with the keyboard command F2. See Section 4.3.

15.5. An enemy to shoot at

 It is now time to add something to shoot at. Select
the “Target” object with the right mouse.

 The tasks a game logic on the enemy has to do
are:

1. Reaction to hits (collisions) with the bullets

2. Make a silly face when hit, and die

3. Add some points to the players score

 You can see that I try to keep the game logic on the target itself. Although it is
possible to put all that to the player or any other central element, it would make it
very complex and diffi cult to maintain the logic on this object. Another advantage of
using local game logic is that it makes it much easier to re-use the objects and the
logic, even in other scenes.

 We start again with by adding a Sensor, Controller and an Actuator and wiring them.
You should be familiar with that procedure by now. To react to a collision, change
the Sensor to a Collision Sensor. Enter “bullet” into the “Property:” fi eld, this is the
name of a Property carried by the bullet, this way the Collision Sensor will only react
to collisions with bullets.

Figure 15-12. LogicBricks to make the target look silly

 Change the Actuator to Edit Object and choose “Replace Mesh” as the type. Enter
“TargetDead” into the “ME:” fi eld. This mesh show the dead target and will be
shown from now on when you hit the target. The dead target is on a hidden Layer,
you can look at it when you switch Layer 11 on and off by pressing SHIFT-ALT-1KEY
(see Section 24.1).

 To score our hit we will Blender’s messaging system. This allows us to send
messages from objects to objects. In this case we will signal to the score-display to
add some points to our score. So add a second Actuator to the target, wire it with
the existing Controller and change it to a Message Actuator.

chapter 15 :: Tube Cleaner, a simple shooting game

 III

85

 III

86

 We can leave the “To:” and “Body:” fields blank, just fill in the “Subject:” field with
“10points”. This is equal to shouting into the room an the score-keeper will note the
score.

 We now need to set up the score-display to react to the score messages. Select the
“Score-display” object and add LogicBricks as shown in Figure 15-13.

Figure 15-13. LogicBricks to count the score

 The “Score-display” is again an object with a special texture on it showing the
content of the “Text” property as explained for the bullets-display. Be sure to change
the 999 to zero or the score will start with 999 points. The Message Sensor will only
hear messages with the “10points” subject and then trigger the Property Actuator
to add 10 to the “Text” Property which is then displayed. This way it is also very
easy to add different scores to different actions, just add a new line of LogicBricks
listening for different subjects and then add the appropriate amount of points.

 You should now try out the game so far and shoot at the enemy. This should add
10 points to your score. If anything fails to work, check especially the correct wiring,
and that the names and capitalization of Properties and message-subjects are as
they should be.

 In the final game the targets start to slide down the tube, look at Figure 15-14 for a
possible solution for that. The simple target also has the drawback that it will still
add a score when you hit a dead target.

Figure 15-14. Advanced animation for dead targets

 We have already used most of these LogicBricks. Together with the reference (see
Chapter 27) and the final game on the CD you can now try to extend the file or just
enjoy playing the game. Don’t desperate and keep on experimenting. By breaking
the task into small steps, even complex logic is possible without getting lost.

 Tube Cleaner, a simple shooting game :: chapter 15

 III

87 chapter 16 :: Low poly modeling

 III

88 Low poly modeling :: chapter 16

Chapter 16. Low poly modeling
by W.P. van Overbruggen

 In this tutorial, we’re going to model a low polygon car, a 50’s style car to be exact.
Since we’re aiming for a real-time model which can be used in games we’ll set a
polygon limit of 1000 triangles for the entire car. Even though most recent console
and PC racings game have cars of up to 4000 triangles the 1000 triangle limit should
still give us enough space to add nice details and still keep it acceptable on almost
any recent computer with a 3-D graphics card.

Figure 16-1. Racer game

 You can load and play a complete game with the same style car from the
CD: Demos/55wheels.blend

16.1. Loading an image for reference

 To make the whole process easier we will be
using an image displayed in the back-buffer of
blender as a easy guide. So first up we will load
the image into the image back-buffer. This is
done by pressing SHIFT-F7 in the 3DWindow
which takes us to the back-buffer window.

chapter 16 :: Low poly modeling

 III

87 chapter 16 :: Low poly modeling

 III

88 Low poly modeling :: chapter 16

 To load the guide image hit the big
“BackGroundPic” button this will open
up a new set of buttons including the
“Load” button. Press it.

 This is the image window, normally
used for loading textures but we will
now use it for selecting the image
which we will be using for reference.
Go to the folder Tutorials/
Carmodelling/ which contains
the 3 images called front.jpg,
back.jpg and side.jpg. Load the
side.jpg by clicking the left mouse
button on the image and hitting
ENTER to confirm.

 Once the image is loaded we will head
back to the 3DWindow by hitting SHIFT-
F5.

 Low poly modeling :: chapter 16

 III

89 chapter 16 :: Low poly modeling

 III

90 Low poly modeling :: chapter 16

16.2. Using the reference image.

 Alright -- let’s get started with
modeling this car. Make sure you are
in FrontView by hitting PAD1. Select
the default plane with the right mouse
button, then hit XKEY to delete it.
Next up we will add a new plane by
hitting SPACE and selecting
“Mesh->Plane” from the menu.

 Now that we have a plane in
FrontView we will first delete the
bottom two vertices which can easily
be done by selecting both bottom
vertices.

 They can either be selected by
holding SHIFT and selecting them
with right mouse button or by hitting
BKEY for BorderSelect and while
holding left mouse dragging a border
around the two bottom vertices. Once
selected, delete them by pressing
XKEY.

 III

89 chapter 16 :: Low poly modeling

 III

90 Low poly modeling :: chapter 16

 Now select the other 2 vertices in
the same manner and line them up
with the back of the body of the car
by pressing GKEY and moving the
vertices. Confirm the new position by
clicking LMB.

 Select the right vertex with RMB and
move (GKEY) it to the front of the car.

 Next up we will start adding
additional vertices to complete the
side view of the car. Make sure you
have the right vertex selected and
hit EKEY to extrude the vertex into a
new vertex. Hit ENTER to confirm the
pop up request. To create a smooth
front we will move the new vertex a
little bit to the right and little bit lower.
Press LMB when you are satisfied
with the position.

 Now with this method we will trace
the entire side of the body of the car,
try to trace it with as few vertices
as possible. To connect the last two
vertices to each other, select them
both (hold SHIFT to select the second
one with RMB), then press FKEY to
connect them. When you are finished
leave EditMode (TAB) to complete the
outline.

 In the same way trace the other parts of the car, like the top and the bumpers. Use
the image above as a reference.

 III

91 chapter 16 :: Low poly modeling

 III

92 Low poly modeling :: chapter 16

16.3. Outlining the Wheels

 First place the 3DCursor in the
middle of the wheel, on the reference
image by pressing the left mouse
button over the wheel’s center. New
objects are always added on the
exact position of the 3DCursor. You
can always zoom the view by holding
CTRL-MMB and moving the mouse up
and down. Panning the view is done
by holding SHIFT-MMB and moving
the mouse.

 Hit SPACE and choose “Mesh>Circle”
from the top entry of the ToolBox, a
menu will pop up stating how many
vertices you want the circle to consist
of, set this to 10 by holding SHIFT,
pressing left mouse at the value and
filling in 10. To confirm it click on the
“OK” button.

 Now the circle might not be the
same size as the wheel is, so we will
fix this by pressing SKEY (for scale)
and moving the mouse closer to the
center of the circle.

 When scaling the wheel to the
approximate size of the image, you
can hold down CTRL to scale down
in steps of 1.0 to scale, you can also
scale in even smaller steps by holding
SHIFT. If you are pleased with the
result press LMB and leave EditMode
(TAB) afterwards.

 III

91 chapter 16 :: Low poly modeling

 III

92 Low poly modeling :: chapter 16

 The last thing we will do in SideView for now is select the wheel and hit SHIFT-D to
duplicate it, once this is done move it into the position of the front wheel and press
the left mouse button to confirm the new location.

16.4. Loading the front image

 By using the things we have learned
earlier in this tutorial we will load the
front.jpg of the car into the backbuffer
which we will use to create the front
of the car. Press SHIFT-F7 over the
3DWindow to do so.

 First we’ll go into SideView by pressing PAD3. Now as you might notice the scale of
the front image and the model we traced isn’t the same size here. Lets quickly fix this
by selecting all of the objects by hitting BKEY and draw a border around them. Then
hit SKEY to scale it to match the front image. Press LMB to confirm the new scale.

 Once this is done, we will select the top
of the car with using the right mouse
button.

 III

93 chapter 16 :: Low poly modeling

 III

94 Low poly modeling :: chapter 16

 Press TAB to go into EditMode and
select all the vertices with AKEY,

 …then press EKEY to extrude the
selected vertices alongside the image,
position them just before the top starts
to curve as seen in the screenshot. Press
LMB to confirm the extrude.

 We will now extrude it a second time
to create a smoother top.

 Once the third row of vertices is in
place, select the top vertices and move
them to the right to follow the shape a
bit more closely.

 Following this principle, we’re going to
extrude all the other parts in the same
manner.

 III

93 chapter 16 :: Low poly modeling

 III

94 Low poly modeling :: chapter 16

 From time to time, make sure you rotate the view by holding MMB and moving the
mouse. Also switch between FrontView and SideView to make sure the vertices are
placed in the right places.

 As you can see, we’re only building one side of the car, this saves time since a car
usually symmetrical and we can easily duplicate this side later on, flip it and re-
attach it to the original side of the car to create a whole model.

 Now, when you select the wheels, make
sure you first place them correctly in the
FrontView in relation to the image, since
we originally traced them in FrontView,
Blender positioned them along the same
line as the other parts of the car.

 Then extrude them once, but don’t
leave the EditMode yet.

 To create the hubcap shape hit EKEY
once more to extrude them but don’t
move them this time. Instead press
SKEY to scale them inwards to the size
of the hubcaps. Confirm with LMB.

 Hit EKEY once more and move the
extruded vertices to the left to create
the hubcap. Once positioned confirm
once again with LMB.

 III

95 chapter 16 :: Low poly modeling

 III

96 Low poly modeling :: chapter 16

 Hit SKEY one more time and scale
them a little bit smaller to make sure
they are not at a 90 degree angle.

16.5. A quick break

 Alright, lets have a quick look at how
it looks in 3-D. This is easily done by
pressing the middle mouse and moving
the mouse to go into a 3-D view. Were
getting there as you might see.

 Press ZKEY to look at the car in shaded
mode,

 III

95 chapter 16 :: Low poly modeling

 III

96 Low poly modeling :: chapter 16

 …now don’t be alarmed…there are
some holes in the model, but they will
be closed up soon.

 First we have to finish up a little work
on the rear of the car. Go into topview
by pressing PAD7 and switch back to
wireframe with ZKEY. Of course, this
type of car needs the classic “wings” on
the back.

 So select the body of the car and go
into EditMode (TAB). Select the last two
rows of vertices and deselect the two
vertices second from the side of the car
as shown in the image.

 Grab them with GKEY and while
holding CTRL move them 1 grid unit to
the right.

 Go back to FrontView (PAD1) and smooth out the trunk of the car by moving the
vertices in a smoother curve.

 III

97 chapter 16 :: Low poly modeling

 III

98 Low poly modeling :: chapter 16

 Now while still in FrontView, you might
notice that the chassis is currently
poking through the back of the car.

 This is quickly fixed by moving the
chassis’ back vertices more to the right
as shown in the screenshots.

 To finish this section, let’s go back to FrontView to add the bumpers to the car using
the same extrude method as we used previously.

16.6. Closing up the holes

 Now its time to close those holes in the
side of the car. Select the top of the car
and go into LocalView, done by pressing
PAD/ . LocalView allows you to work
on a single object without the clutter of
other objects in your view.

 This view is especially handy for more
complex models but it will be quite
useful here too. Go into SideView
(PAD3) once more and enter EditMode
by pressing TAB.

 III

97 chapter 16 :: Low poly modeling

 III

98 Low poly modeling :: chapter 16

 Select the top row of vertices on the
outside, then hit FKEY to create a face
to close it up. After that, select the
bottom 4 vertices and hit FKEY to close
the first part of the side.

 You need 4 or 3 vertices to create a face in blender. “Faces” also mentioned earlier
as “polygons” can be squares otherwise known as “quads” or triangles in Blender.

 If you get an error “Can’t make edge/face”, check if you don’t have more than four
vertices selected.

Tip: Blender can also help you to fill faces with more than four vertices. Use SHIFT-F
for this. However, when the vertices are not in one level this may result in ugly fills and
unwanted triangle faces.

 Switch back to TopView and we’ll smooth the edges of the top by moving the
vertices at the edges inwards slightly.

 Try to keep the faces you create as clean as possible, -- quads are preferred -- as this
will save a lot of time when it comes to texturing the model. Following these steps
and close up the sides of the model using the described technique.

 After every hole is closed up you will have something similar to this screenshot.

 III

99 chapter 16 :: Low poly modeling

 III

100 Low poly modeling :: chapter 16

16.7. Flip it

 Now its time to flip this half car over
and create a complete one. Make sure
you’re in SideView (PAD3), select the
top of the car and go into EditMode.

 Select everything by hitting AKEY and
pressing SHIFT-D to duplicate it. Now to
actually flip it we first press SKEY and
then XKEY without touching the mouse,
because were going to flip the model
over the X axis. Press ENTER to confirm
the action.

 It is also possible to flip objects across

the Y axis with YKEY.

 To connect the two parts we line up the
middle row of vertices by moving the
new part to the right and selecting the
middle line of vertices (best done with
Borderselect BKEY).

 Because we now have two rows of
identical vertices we can remove the
vertices that are covering each other.
Press F9 to go into the EditButtons and
click on the “Remove doubles” button
to remove the double vertices.

 III

99 chapter 16 :: Low poly modeling

 III

100 Low poly modeling :: chapter 16

 If the vertices are close enough to each other you should have gotten a popup
stating “removed: 6”. Good job, you now have removed 6 vertices and the model is
now joined together. If you get a lower number increase the “Limit:” value a bit and
try again to remove the remaining doubles.

16.8. Finishing things off

 Once this is all done we should have a
very nice low poly car if I say so myself!

 As you can see in the top right of your
Blender screen, the model consists of
406 faces, and quite a lot of them are
quads, a graphics card can only handle
triangle polygons, don’t worry the
graphics card will sort this out by itself.
However we have to be aware that the
406 faces number then doesn’t mean
we have 406 polygons, the real polygon
count should be around 800 polygons,
which is pretty decent. Now, if you
want, you can add extra detail to the car
like headlights, tail lights and a big ol’
engine block on the hood to make it a
bit more interesting.

 As a final note, once the model is
finished you can look for hidden faces
to optimize it. A useful tip for this is to
turn on the “Draw faces” button in the
EditButtons. I’ll take the top of the car
as an example. In the screenshot, I have
selected the faces that can’t be seen
and are just a waste of polygons.

 III

101 chapter 16 :: Low poly modeling

 III

102

 You can delete faces by selecting them,
pressing XKEY and clicking on faces.
And voila another eight polygons saved.

 I hope you enjoyed this introduction to
Blender’s powerful modeling tools and
fast interface in modeling objects.

 You can get the final model from the CD as Tutorials/Carmodelling/
lowpolycar.blend

 III

101 chapter 16 :: Low poly modeling

 III

102

105

 IV

106 Super-G :: chapter 17

 IV

 The intermediate tutorials explain various individual aspects of making interactive
3-D graphics with Blender. This includes level design, the physics provided by the
game engine, special effects like smoke and fire or making real-time displays for
simulations or games.
 The tutorials teach each of these aspects using ready made scenes to give you a
quick learning curve, but they have been designed to be adapted by you for your
own scenes.

105

 IV

106 Super-G :: chapter 17

 IV

Chapter 17. Super-G
 Super-G is an Olympic discipline, and a mix between alpine downhill and slalom.
I (Carsten Wartmann) decided to use this combination because it gives a nice mix
between mayhem speed and sharp curves.

Figure 17-1. Super-G Ski Racing

 You can load the file Demos/SuperG.blend from the CD and play it. You get a
point every time you pass between two goals. Additionally your completion time
is measured. This is already enough to create a little competition between friends,
although it is not a complete game.

Table 17-1. Super-G game controls

Controls Description

CURSOR LEFT/RIGHT Steer

CURSOR UP Accelerate

CURSOR DOWN Decelerate (a bit, drive a half circle to
really stop)

The two tutorials in this chapter deal with the process of level creation and design.

17.1. Adding objects to the level

 Load Tutorials/SuperG/SuperG_00.blend from the CD. This file has no objects
like trees or flags. You can race it (press CTRL-LEFTARROW for a full-screen view)
but it is a bit boring and there will be no scores.

107 chapter 17 :: Super-G

 IV

108 Super-G :: chapter 17

 IV

Figure 17-2. Some ready-made objects for Super-G

 Contained in the file Tutorials/SuperG/LevelElements.blend are some objects
which are ready-made for inclusion.

 You can load these Objects to the level by appending them to the level scene. Use
SHIFT-F1 or “Append” from the FileMenu. Append all or only some objects, but if
you want to append the flags “Green.000” and “Red.000” then you also need to
append “Red_dyna” and “Green_dyna”, these are needed for proper functionality.

 I suggest you to place the flags first. In the scene there is a object called “TrackPath”
which you can use as guide to place the flags. For placing the flags I suggest the
window layout from Figure 17-3. It is a TopView left for the placing in the X-Y plane,
a SideView to adjust the height and a CameraView to control the height of the
elements.

Figure 17-3. Window layout for placing objects in the level

Select the red flag (RMB), and then extend the selection to the green flag with
SHIFT-RMB. Using the grabber (GKEY) in the TopView, move both flags to the
beginning of the track. Confirm the position with LMB. Without deselecting, move
your mouse to the SideView and move both flags until you can see them sticking out
of the snow in the CameraView.

 Now as the first goal is set, we can continue making more. With the first two flags

107 chapter 17 :: Super-G

 IV

108 Super-G :: chapter 17

 IV

still selected, place your mouse cursor over the TopView. Now copy the two flags
with the ALT-D, the copied flags are now in GrabMode, so move them along the path
and confirm the position with LMB.

Info: We used ALT-D here, this makes a linked copy, meaning that the dozens of objects
we will create in the end share their mesh, saving in filesize. See Section 4.12.

 Again move your mouse to the SideView and position the new flags in height.
At this moment it is starting to be hard to see if the position is correct in the
CameraView, depending on how far you placed the new flags.

 One possible solution for this problem is to change the CameraView to a
PerspectiveView and then always navigate to the new flag position by rotating,
panning and zooming the view. Another method would be to create a new camera
and move this camera along the track while creating new objects.

 Blender offers a very convenient and fun way to place a camera. The so called
“FlyMode”. Create a new Camera with the Toolbox in the old CameraView. This
newly created Camera will have the same point of view as the old one, so you can’t
see a difference straight away, but it is now the active camera. While with your
mouse over the CameraView, press SHIFT-F to start FlyMode. Move your mouse
and you can see the camera is rotating and banking according to your movements.
Speed up by repeatedly pressing LMB and decrease speed using MMB. There are
two ways to end FlyMode, pressing ESC will stop and set the camera back to its old
position. Pressing SPACE will stop FlyMode and keep the current position.

 After repositioning the camera you can select the flags again and continue with the
copy and place cycle until all objects are placed on track. The placement of the other
objects works the same way. To switch back to the player view, select the camera
attached to the player and make it active by pressing CTRL-ALT-PAD0.

17.2. Object placing with Python

 Even with a lot of experience of navigating in 3-D world, the task of placing many
objects gets boring and distracting. To avoid this, I will show now you an advanced
technique taking advantage of Python scripting inside Blender’s game engine
and Blender Creator. This tutorial is meant to give you an idea of how to use and
combine Blenders tools to achieve complex tasks in a short time. It requires some
basic understanding of a programming language.

 Blender’s game engine can be used to let objects fall onto the level ground. The
problem is that these positions will only be valid as long as the game engine runs.
Although it is possible to have hundreds of objects with game logic needed to
achieve this task, it will slow down the game and make it unplayable on slower
computers. The solution is to store the position in a file on disk and the use the
positions out of this file in Blender Creator to place objects without the game logic.

 Load the scene Tutorials/SuperG/SuperG_00.blend as base for this tutorial. Then
append all Objects from Tutorials/SuperG/LevelElements.blend to this scene.

 Place all the elements you want to have in the level in TopView, use the same
procedures to copy and move as described in the previous chapter, but with no need
to place them exactly on the ground. Make sure that all elements are placed above
the ground.

 The object “DesignHelper” contains the LogicBricks and Python script we need.

 Now we need to select all of the objects to place. Switch to the ObjectBrowse with
SHIFT-F4, here you can select multiple objects with RMB. Press ENTER when you are
satisfied with your selection.

 Switch back to the 3DWindow with SHIFT-F5 and extend the selection with the
“DesignHelper” object. Now copy the LogicBricks of the helper to all other selected
objects with CTRL-C and choose “Logic Bricks” from the menu.

 Open a TextWindow with SHIFT-F11 and browse to the “WritePositions” Python
script.

Figure 17-4. Script to write object positions

 1 import GameLogic

 2

 3 # CHANGE the file/path name! (e.g. c:\temp\objs.txt)

 4 FILE=”/tmp/objs.txt”

 5

 6 f = open(FILE,”a”,8192) # opening for appending

 7

 8 contr = GameLogic.getCurrentController()

 9 owner = contr.getOwner()

 10

 11 # get position

 12 pos = owner.getPosition()

 13

 14 f.write(owner.getName()[2:]+” “+str(pos[0])+”

 “+str(pos[1])+” “+str(pos[2])+” \n”)

 15

 16 f.close()

 Change the filename in line 4 to reflect your hard disk layout and needs. Now start
the game engine and wait until all objects are settled on the ground, then stop the
game engine. You can examine the file created by the script now, it is a regular text
file containing the names and positions of the objects line by line. You can open this
file in any text editor.

 To read back the positions, change the filename in the “ReadPosition” script and
press ALT-P with your mouse over the TextWindow.

109 chapter 17 :: Super-G

 IV

Figure 17-5. Script to apply the object positions

 1 import Blender

 2

 3 # CHANGE the file/path name! (e.g. c:/temp/objs.txt)

 4 FILE=”/tmp/objs.txt”

 5 f = open(FILE,”r”,8192)

 6

 7 lines = f.readlines()

 8

 9 for line in lines:

 10 words=line.split(“ “)[:-1]

 11 obj=Blender.Object.Get(words[0])

 12 obj.LocX=float(words[1])

 13 obj.LocY=float(words[2])

 14 obj.LocZ=float(words[3])

 15

 16 Blender.Redraw()

 17

 Throughout this tutorial I have shown you the most common way in which to build
the level design phase of a game. During the development of any bigger game or
interactive 3-D application, you would need to write a set of tools or scripts to help
you with your work. These tools will take some effort initially to write, but they will
help you in the future when you wish to further develop or change your games. Also,
the tools or scripts can be re-used in future projects as well. Blender’s approach,
to contain all tools for 3-D content creation combined with the Python capabilities,
gives you a fast and flexible toolset for nearly all aspects of your work.

110 Super-G :: chapter 17

 IV

111 chapter 18 :: Power Boats

 IV

112 Power Boats :: chapter 18

 IV

Chapter 18. Power Boats

Figure 18-1. “Power Boats” 3rd person perspective

 The „Power Boats“ game was designed by me (Carsten Wartmann) with the idea of
making a fun game of driving around in a powerful boat. I tried to make it a bit more
of a simulation than an arcade game, but because I have never driven a real power
boat, I doubt I was very successful.

 I added some elements that make a game, like the counting and timing of laps.
However, to make it a real game there is more needed, like an intro, more levels, and
of course other boats (CPU controlled) to race against.

 So enjoy driving around, explore my scene and of course expand or change it! I
am very curious as to what people can do with it in terms of making it a game or
creating new levels.

Figure 18-2. “Power Boats” 1st person perspective

111 chapter 18 :: Power Boats

 IV

112 Power Boats :: chapter 18

 IV

Table 18-1. Powerboats game controls

Controls Description

CURSOR LEFT/RIGHT Steering, you need to have some speed
to steer

QKEY Increase throttle

AKEY Decrease throttle

F1 First person perspective

F2 Camera behind boat

F3 3rd person perspective

F4 Helicopter camera

 The tutorials in this chapter deal with methods of making real-time cockpit
instruments and how to pass information between game elements.

18.1. Engine control

 The engine control is mainly for showing the throttle position, so it is in fact an
instrument.

Figure 18-3. Engine control in 3DWindow with modeling help

Load the file EngineControl_00.blend from the Tutorial/Powerboats/ directory
on the CD or model one yourself.

 Select the lever (“EngineCArm”) with the right mouse button, we are going to create
an animation curve for this object. The object should not be rotated, so that we can
use one main axis for rotating the lever.

113 chapter 18 :: Power Boats

 IV

114 Power Boats :: chapter 18

 IV

Info: Ipo animation curves in Blender are global to the scene (world) axis. To overcome
this we can use object hierarchies done by parenting. After parenting we can rotate or
move the parent object and the Ipos on the child will get their reference from the parent
object.

 Rotate the lever around the Y-axis about 15 degrees to determines the neutral
position. Insert a keyframe with IKEY and choose “Rot” from the pop up menu. You
should have an IpoWindow (SHIFT-F6) open so you now can see horizontal lines of
the new generated Ipos.

 Advance the current frame by pressing CURSORUP ten times. Rotate the lever
another 20 degrees and insert another “Rot” key frame by pressing IKEY. We can’t
rotate the lever completely to the end position because Blender then will try to
interpolate (Ipo stands for “interpolation”-(curves)) the key positions and that will
lead to an unwanted result of Ipos for more than one axis.

Figure 18-4. Animation curves (Ipo) for all three axes

 Move your mouse cursor over the IpoWindow and select the curved line (RotY when
you use the prepared scene) with RMB. Now enter EditMode (TAB) for this curve.
The right key should be selected (yellow, RMB to select). With your mouse over the
IpoWindow press NKEY and enter -160 in the “LocY” field.

 You can now test the Ipo by pressing ALT-A over any 3DWindow. Save the file now.

 Load “Powerboats_00.blend”, this file does not have the engine control and
instruments for the FPS perspective, so we can use it for this tutorial.

 Use SHIFT-F1 or “Append” from the FileMenu and browse to the prepared engine
control file (your file or “EngineControl_02.blend” from the CD). Enter “Objects”
and select all three objects (RMB), then press ENTER or click the “LOAD LIBRARY”
button. The engine control is now appended to the actual scene together with the
animation curve and preserving the object hierarchies.

113 chapter 18 :: Power Boats

 IV

114 Power Boats :: chapter 18

 IV

 Zoom out until you see the “mountain size” engine control. Select the base of the
control, use rotate, scale and move until it fits to the boat and is positioned nicely on
the dashboard. Now extend the selection by SHIFT-RMB on the boat mesh (“Hull”),
and parent the engine control to the boat with CTRL-P.

Figure 18-5. Engine control mounted to the dashboard

 Now the control is mounted to the boat, but it needs to be made functional. Select
the conrol lever (“EngineCArm”) with RMB and switch to the RealtimeButtons F8.
Create the LogicBricks as shown in Figure 18-6

Figure 18-6. Engine control LogicBricks

 These LogicBricks copy the “gas” property (the throttle position) from the Boat
object to the local “gas” Property of the lever object. The values of “gas” reach from
0% to 100%, and we play the Ipo with the Property Ipo Actuator according to this
value, so that the lever will always reflect the “gas” Property.

18.2. Cockpit instruments

 The procedure to make cockpit instruments is very similar to the engine control. In
fact the engine control is not a control here but also an instrument.

Figure 18-7. Intruments

115 chapter 18 :: Power Boats

 IV

116 Power Boats :: chapter 18

 IV

The instruments are modeled in Blender an then the rendered image is used as
texture in the Power Boats scene. You can see and change the instruments in the
scene Tutorials/Powerboats/Instruments.blend . One thing to note is that
the scale of the revolution counter is not linear. To make it display the revolutions
correctly, a complicated formula is needed. Or even better with Blenders Ipo curves,
we can visually calibrate any displays very easily by just moving Ipo handles.

Figure 18-8. Ipo for the revolution counter

Another difference is the way we pass the value for the revolutions to the
instrument. For the engine control we used the Copy Property Actuator. This is an
easy way to do it, but will not work across scene borders. When you switch to a 3rd
person view in the PowerBoats game, you get the instruments as an overlay, this is
done by rendering an overlay scene onto the main scene. In this case we need the
rpm value on two instruments and across a scene border. The solution here is to use
Blender’s messaging system. The rpm value is then sent by the engine, and every
instrument can listen to this message and process it. This way adding an instrument
(in this case for example a warning when the rpm gets too high) is very easy.

Figure 18-9. LogicBricks to receive rpm messages and play the Ipo

 You can see in Figure 18-9 that we receive messages with the subject “RPM”
to trigger the “MessageBody” (see Figure 18-10) script. This script extracts the
message body into the property (which needs to exist on the object) “mbody”. The
Property Ipo Actuator then plays the Ipo according to the value in “mbody”.

115 chapter 18 :: Power Boats

 IV

116 Power Boats :: chapter 18

 IV

Figure 18-10. Script to extract message bodies

 1 # Extracts message bodies

 2 from types import *

 3

 4 cont = GameLogic.getCurrentController()

 5 mess = cont.getSensor(“message”)

 6 me = cont.getOwner()

 7

 8 bodies = mess.getBodies()

 9 if bodies!=None:

 10 for body in bodies:

 11 if type(me.mbody) is StringType:

 12 me.mbody = body

 13 else:

 14 me.mbody = float(body)

 To make this script work without changing it, the Message Sensor has to be named
“message” and there needs to be a Property “mbody”. The script will convert the
message body into the correct type (i.e. String or Integer) of the Property.

Info: To take full advantage of Python, we recomment installing a complete Python
distribution, it also comes with a very good guide to Python. Because the development
of Python is very fast too, we suggest to use Python 2.0 for the best compatibility with
this version of Blender. All games in the Demos/ directory on the CD work without a full
Python installation.

 Now there is one open point: how does the messages need to be send? That’s
where the Message Actuator kicks in.

 Note the “Subject:” field and that the “T/P” Button is activated.

 The lessons learned in this tutorials can be applied to many different games and
interactive 3-D applications, where you need controls or displays. We showed you
two possibilities: one of how to pass information between objects and the other
how to use Blender as a tool to produce textures for the game engine. The use
of Blender’s animation curves gives us the possibility to change and adjust the
displayed information graphically.

117 chapter 19 :: BallerCoaster

 IV

118 BallerCoaster :: chapter 19

 IV

Chapter 19. BallerCoaster
by Martin Strubel

This tutorial will cover some detail about real natural behavior, so fasten your seat
belts for some physics in the last section! But please don’t skip to the next chapter
yet, it’s not all that bad, and of course we will start with the fun stuff first.

 The Blender game engine is able to simulate the natural behavior of rolling balls
quite nicely - this fact suggests to build a roller coaster, or rather, making a trade
mark of it: a BallerCoaster!

 We want to save you, dear reader, much time, though. Therefore, we provide you
with a kit of “prefabricated” elements such as curves, slopes and other path types
which you can simply plug together. We will also show you how to generate your
own path elements using Blender’s bevel curves.

 At this point I would like to say thank you to my dear mate Freid who modeled the
room environment and let me use it for the background.

19.1. Assembling a track

 To give you an idea of a possible result first, look at the provided demo file: Demos/
BallerCoaster.blend , see also Figure 19-1

Figure 19-1. BallerCoaster demo

 Start Blender, and load the demo file using F1. To start the demo, move the mouse
over Blenders 3DWindow and press PKEY. I have also added some extras, accessible
using the following hotkeys:

117 chapter 19 :: BallerCoaster

 IV

118 BallerCoaster :: chapter 19

 IV

Table 19-1. BallerCoaster game controls

Controls Description

NKEY Make the ball dispenser spawn some fresh balls

SKEY Switch track elements (just try!)

SPACE Toggle between ball camera (following red ball)
and observer’s perspective

AKEY Switch fixed camera view

ENTER Restart demo

 When you have become a little dizzy by looking through the crazy ball camera, it’s
probably time to make your own track now -- we will look at the demo again later
when discussing some game logic: some (little) intelligence attached to the objects.
Switch to the screen “elements” with CTRL-RIGHTARROW. You will now see a bunch
of path elements which are waiting to be grabbed and moved with the mouse (see
Figure 19-2). This is how you do it:

 1. Switch to TopView using PAD7

 2. Select an element with RMB.

 3. Press ALT-D to make a linked copy of the object (see Section 4.12).

 4. Press GKEY to move the element, while holding CTRL. This will snap
 the position of the object to the grid, helping you with the alignment of
 the elements. The same works with rotation: press R, rotate with the
 mouse while holding down CTRL.

 5. Switch to FrontView or SideView using PAD1 resp. PAD3 and move your
 object to the desired place (with CTRL hold).

If you accidentally forgot to hold CTRL while moving the object, you can always snap
it to the grid again by pressing SHIFT+SKEY, “Sel->Grid”.

Figure 19-2. Path elements

119 chapter 19 :: BallerCoaster

 IV

120 BallerCoaster :: chapter 19

 IV

Assuming that you have plugged together some elements to a decent track, we now
want to test it! Grab the ball dispenser (the little rusty box) and place it above the
track. Press PKEY to run the demo and NKEY to add some balls. You will see the
balls disappear when they hit the ground plane. This is intentional, because we don’t
want to crowd the scene with too many dynamic objects -- you will notice, that if you
add a lot of balls at once by firing NKEY, the whole animation may get quite slow.
This is due to the dynamics calculations which take quite some CPU time.

19.2. Game Logic

 To get a nice cycle to work as in the demo, we will need to add some more logic. Let
us have a look at the logic of the simple elements we have used until now.

 • Ball dispenser: Pressing NKEY produces a new ball

 • Balls: If they hit the ground, they are destroyed

 In Figure 19-3 you can see the LogicBricks of the object “dispenser”, as displayed in
the RealtimeButtons F8. The keyboard event simply adds a new object “ball” at its
position, marked by the little pink PivotPoint. This ball object is located in layer 10
(ZEROKEY).

Info: Objects to be added inside the game engine must always be in a non visible
(inactive) layer! Read more about layers in Section 24.1.1.

Now change to layer 10 by pressing 0KEY and select the ball to check its attached
logic. Tip: Press HOMEKEY in the 3DWindow if you feel lost in 3-D space -- this will
help you to locate your objects.

The ball logic is simple: When the ball collides with an object with the Property
“death”, it will cause its own end. Now get back to layer 6 and select the
ground plane - it has indeed the property “death”, shown on the left side of the
RealtimeButtons. It’s that easy!

Figure 19-3. LogicBricks for the dispenser

In layer 10 you will also find the bucket object which is used to fake the ball elevator.
This one has a more complex logic and is not too elegant, but it’s still simpler than
defining an animation for each single bucket. We will not go into the details of its
logic though, this is left to the reader.

119 chapter 19 :: BallerCoaster

 IV

120 BallerCoaster :: chapter 19

 IV

19.3. Making track elements

 It may get a little boring after a while, assembling all the prefabricated stuff. We will
now show you how to make the track elements yourself.

Bevel curves
 In the demo file, select the screen “elements” from the screen menu (or press CTRL-
RIGHTARROW). Here you find all the element prototypes, in the form of beveled
curves. This curve type consists of a path (a 3D curve) and a diameter curve, which
is extruded and oriented along the path. Let’s have a closer focus on this (see Figure
19-4).

Figure 19-4. Beveling a track

 1. Select one of the bevel curves with RMB and press TAB to switch into
 EditMode.

 2. You can now move the control vertices of the path as usual, and change
 the local orientation with TKEY and by moving the mouse. The
 orientation of the path is immediately reflected in the railway like
 representation.

 3. Pressing TAB again will recalculate the extrusion of the diameter curve.

Figure 19-5. EditButtons for the bevelcurve

 The easiest way to create new tracks is just, to make a true duplicate (using SHIFT-
DKEY) of an existing track element and modify its curve.

If you want to start from the bottom though, these are the steps of reconstruction:

 1. Activate the EditButtons by F9.

 2. Add a Bezier Curve by pressing SPACE->Curve->Bezier Curve (a NURBS
 curve works too).

 3. Add a second, preferrably closed curve (Bezier Circle), modify it to an
 U shape. Rename this object to, say “dia” by entering the name in the
 “OB:” field (Figure 19-5)

 4. Select the first path curve again, activate the “3D” setting in the
 EditButtons and enter the name of the U shape curve (“dia”) in the field
 “BevOb”.

121 chapter 19 :: BallerCoaster

 IV

122 BallerCoaster :: chapter 19

 IV

 5. Adapt the resolution of both of the curves to the most acceptable low
 polygon count. You might want to convert the diameter curve into a
 Polygon Curve by clicking the “Convert Poly” Button (Figure 19-5) to
 get the best control over the shape.

 Finally, the bevel object must be converted into a mesh for the Game Engine. This is
done by selecting the object and pressing ALT-C for “Convert Curve To: Mesh”. But
careful! You are advised to make a duplicate copy (SHIFT-DKEY) of the curve objects
before conversion, because the original curve object will be lost otherwise.

A few more tips about curve editing:

 • If the resolution of a curve near a control vertex is to great, change its
 weight by selecting the vertex, choose the weight from the weight button
 group (or enter manually by holding SHIFT while clicking on the “Weight:”
 button) and apply “Set Weight”.

 • You may also want to play with the order setting of the curve to modify
 the bending shape. But remember that the minimum number of control
 vertices must be greater than the order. For our needs, the “Endpoint”
 option might also be the most desired one.

Plastic surgery -- some mesh beautification

After conversion to the mesh, some alignment corrections of vertices of the path
element’s ends might be necessary, see Figure 19-6. Otherwise, ugly effects can
occur after “plugging” slightly intersecting path elements together.

Figure 19-6. Aligning vertices

Use the Border Select tool BKEY to select all the end vertices, then go for the
following steps:

 1. Set the 3DCursor to a grid point using the LMB and pressing SHIFT-SKEY,
 then 3KEY (“Curs->Grid”) to snap the cursor to the grid.

 2. Press DOTKEY to use the 3DCursor as scaling center.

 3. Place the mouse cursor on the right of the 3DCursor to indicate the
 direction for the scale constraint, then press SKEY followed by MMB to
 constrain the scaling in X direction. Hold down CTRL and scale the
 vertex group’s X components to 0.0, yielding a perfect alignment in X.

121 chapter 19 :: BallerCoaster

 IV

122 BallerCoaster :: chapter 19

 IV

Texturing
We will not go into much detail about texturing here, but give you a quick intro on
how to glue a texture on your newly created track element:

 1. Select the desired mesh and hit FKEY to enter FaceSelect mode. Press A
 to select all faces.

 2. Open an ImageWindow SHIFT-F10 and either choose an image from the
 MenuButton or load a new image by clicking “Load Image”.

 3. Move your mouse pointer over the 3-D view and press UKEY. This will pop
 up a mapping menu. Use the “Cube” mapping option; as a result, you will
 see the so called “UV mapping” of all selected faces in the ImageWindow.

 4. You can edit these mappings by the same methods of vertex selection and
 transformation as you used in the 3DWindow.

19.4. The nature behind BallerCoaster

 This is only for the interest of those who want to know the answer to the question:
why does this demo behave quite like the real world, how is it done?

Gravity
 Most of the phenomena around us, as observed daily, are based on forces. We
are aware that there is a mystic force between any entity in space, especially
omnipresent between earth and ourselves -- gravity! In the simplified world of
our BallerCoaster, you can observe several types of motion: free falling, the static
touch of an object with the ground, rolling, sliding, or collisions. All these cases are
handled by the built in physics engine, so that for the user there is in this simple
demo no need to take over control of the motion - the driving force is the gravity.

Dimensions
 Some words about dimension: a question that is often asked by users is: what is the
measure of Blender grid units in the real world? Meters? Inches? Feet?

 The answer is actually: It’s the way you want it to be. Very helpful, isn’t it? Let
us find a better answer: If you look up the gravity settings in the WorldButtons,
the default value is 9.81 - which means, that with this setting, one Blender unit is
equivalent to 1 meter in the real world. But you can easily calculate and set the
gravity acceleration in inches, and use a Blender unit as an inch, with the same
physical behavior. If you want to build a consistent world with the same scaling,
but different physics, it really helps to model everything in its absolute size (say, if
you want to model a 2 meter tall ogre, you would use 2 Blender units), and use the
default gravity, if you’re keen on the true natural behavior. Then later on you can
tweak the gravity factor, or even use different worlds with different gravities. Figure
19-7 shows an example on “human” (172 cm height) dimensions, the grid units are
set in the current 3DWindow by pressing SHIFT+F7.

123 chapter 19 :: BallerCoaster

 IV

124 BallerCoaster :: chapter 19

 IV

Figure 19-7. Dimensions

In our demo, the balls have a size of 0.04 units, being
equivalent to 4cm. We use a gravity lower than 9.81,
which slows down the motion a bit - we don’t want
to get too sea sick by the crazy ball camera view.
Moreover, a displayed grid unit is equivalent to
0.05 Blender units, as set in the ViewButtons (press
SHIFT+F7 in the active 3DWindow).

Rolling, rolling, rolling
 The most occurring motion state in our BallerCoaster is the rolling case. We
don’t want to get into scientific details - you might have already got sick of these,
hearing them in physics class. But what is causing the rolling motion anyway? It’s
about friction! If you pull your balky donkey (who is of course refusing to walk) by
its leash, you will need quite some force to get him moving. This force, is caused
by the friction between his feet and the ground, is called friction force. If you put
a non-rolling object on an inclined plane, you can find different cases of motion
again, depending on the friction between the object and the ground as well as the
inclination of the plane:

 • Sticking: the external resulting force acting on the object is not great
 enough to compete with the friction force. This is a case of “static friction”

 • Sliding: the applied force is greater than the static friction force threshold
 - it’s a case of kinetic or dynamic friction.

Figure 19-8. Forces on a rolling object

For a rolling object, the same friction states occur, but the effect is different. In
both of the cases, the friction force will apply a torque to the object and make it
roll (Figure 19-8 illustrates this).Therefore, no matter how high the friction is, the
rolling object is not decelerated (unless it’s sliding). But sliding can occur in different
variants:

 • The ball does not move very fast, but spins on the underground. For
 physicists, this means: its rotational energy is about to be converted into
 a linear kinetic energy (some part of the energy is burned in the friction
 process)

123 chapter 19 :: BallerCoaster

 IV

124 BallerCoaster :: chapter 19

 IV

 • There’s little rotation, but a lot of linear motion. The ball will get a
 rotational acceleration by the kinetic friction. Also, some energy will be
 lost in the sliding process (your donkey’s feet can get HOT!).

 So, the simple conclusion of our physics aspects: If your donkey refuses to move,
put it into a barrel and roll it!

 What do we have to worry about now? The case of sliding or sticking is handled
by the physics engine. We must only specify the material parameters of the objects
involved, meaning, the friction coefficients. Friction is normally a parameter
describing the interaction of two materials, in Blender this is a little simplified and
friction is expressed as a value per one material. For the interaction of two materials,
the minimum of both of the involved friction values is taken.

Setting dynamic material parameters
This is a quick guide to dynamic materials (also examine the demo and see Section
26.6):

 • Select the object, switch to the MaterialButtons F5 and choose a material
 “per object”. Normally, materials are assigned to a mesh, but we want
 to assign the material to the object itself, so that we can use several
 objects with a shared mesh, but not shared materials. Material assignment
 per object is selected using the “OB” button (Figure 19-9)

 • Click the “DYN” button to switch to the dynamic parameters of the
 material.

 • Use a low restitution (elasticity) of the materials to avoid too much
 jumping. For the two materials’ interaction, the maximum restitution
 value is taken.

 • Use a relatively high friction on the balls and a lower friction on the track
 elements - remember, the minimum of the friction values is used.

Figure 19-9. Dynamic Settings in the MaterialButtons

Last remarks
 When you have an older 3-D graphics accelerator or computer, the demo will
probably run at a slow frame rate and it may happen that balls get lost because they
don’t respect collisions at all above a certain speed (quantum physics people call
this effect “tunneling”). This is of course an undesired effect in a game engine, but
as we chose for speed rather than accuracy, you will have to live with that fact (or
consider upgrading your PC).

Happy rolling!

125

 IV IV

126 Squish the Bunny :: chapter 20

Chapter 20. Squish the Bunny - Creating
Weapon Effects for a First-Person Shooter
 The tutorial written by Randall Rickert outlines an approach to creating weapon
effects in Blender, using the file Tutorials/SquishBunny/stb-tutorial.blend as
an example of the techniques. You will learn to add a smoke trail effect to a rocket.
These, as well as more sophisticated techniques, are demonstrated in the game
scene when the player fires a rocket.

Table 20-1. Squish the Bunny game controls

Controls Description

WKEY Move forward

SKEY Move backward

AKEY Sidestep left

DKEY Sidestep right

SPACE Jump

LMB Shoot a rocket

Mouse movement Rotate and look

Figure 20-1. Squish the Bunny demo file

The “Squish the Bunny” demo file was made by:

Table 20-2. The “Squish the Bunny” demo file was made by

Artist Role

Randall Rickert Design and Logic

Randall Rickert and Reevan McKay Eye Candy

Janco Verduin Ear Candy

chapter 20 :: Squish the Bunny

125

 IV IV

126 Squish the Bunny :: chapter 20

20.1. Introduction

Figure 20-2. The generator room

This tutorial will outline an approach to creating weapon effects in Blender. We will
be editing a simple first-person shooter game scene as our example. In this scene
you can run around in an immersive environment, firing a rocket launcher which
makes fiery explosions and leaves scorch marks on the walls. This scene could
form the basis for a game in which you fight your way out of a fortress, carry out a
mercenary mission, or test your mettle in a gladiator-style tournament. The goal of
this tutorial is to show you how to make some of the eye candy which is essential
in making such a game engaging. A scene showing the effects in action is Demos/
Squish-the-Bunny.blend (Figure 20-2).

20.2. Getting Started

 Start Blender and open the file Tutorials/SquishBunny/stb-tutorial.blend .
This file has an environment model and a human-perspective camera with enough
game logic to allow the player to navigate using the keyboard and mouse in the style
of some popular first-person shooter games, and to shoot a rocket from the rocket
launcher. To see it in action, press PKEY. Use WKEY, SKEY, AKEY, and DKEY to move
around, and SPACE to jump. Move the mouse to turn and to look up and down. LMB
will shoot a rocket. Press ESC when you are ready to exit the game.

 IV

127 chapter 20 :: Squish the Bunny

 IV

128 Squish the Bunny :: chapter 20

20.3. A Trail of Smoke

 Our first step toward spicing up the action will be the addition of a smoke trail
behind the rocket. A trail of smoke will make the fast-moving rocket more visible and
it will add a lot of visual depth to the scene, giving the player a better sense of the
space.

Figure 20-3. The editing screen

 After exiting the game, press CTRL-LEFTARROW to switch from the current screen
to one which is better suited editing the scene. You will see a 3DWindow on the
left side of the screen with a wire frame view of the scene, an ImageWindow on the
right, and a ButtonsWindow at the bottom showing the EditButtons (Figure 20-3).

20.4. Building a Puff of Smoke

 To represent the puffs of smoke which make up the trail of the rocket, we will use a
special kind of polygon called “halo”.

 A halo face is a polygon which always faces the camera. When used with a texture
containing transparency information in an alpha channel this type of polygon can
create the illusion of volume, because the camera’s perspective won’t flatten the
polygon by viewing it from the edge.

 IV

127 chapter 20 :: Squish the Bunny

 IV

128 Squish the Bunny :: chapter 20

Figure 20-4. Add a plane mesh

 With your mouse in the 3DWindow, press PAD_7 to switch to TopView (make sure
you have PAD_NUMLOCK turned on). Press SPACE and from the pop up menu select
“ADD>Mesh>Plane” (Figure 20-4). A plane is added to the scene and automatically
placed in EditMode (Figure 20-5). Press PAD_1 to switch to FrontView.

Figure 20-5. The plane in EditMode

 For each polygon, one side is considered to be the face side. For the sake of speed,
the game engine only renders the face and not the back of each polygon. We need to
orient the face of the plane toward the negative end of the X axis (the left side of the
window), as this is the side of an alpha face which will face the camera.

Figure 20-6. Amount of rotation

Press RKEY to begin rotating the vertices. Hold CTRL to constrain the rotation to 5°
increments as you rotate the vertices -90° (anti-clockwise). You can see the degrees
of rotation in the WindowHeader at the bottom of the 3DWindow (Figure 20-6).
When the rotation reaches -90° click LMB, which will apply the rotation and end
RotationMode. Press TAB to leave EditMode.

 Press RKEY again. Now you are changing the basic orientation of the object (not
just moving the vertices of the polygon). Rotate the object 90° (clockwise), facing
upwards so that you will be able to see the texture on the plane once you applied it.

 IV

129 chapter 20 :: Squish the Bunny

 IV

130 Squish the Bunny :: chapter 20

 Turn your attention to the EditButtons (F9). Change the name of the object to
“smoke” (Figure 20-7) by clicking into the “OB:” field and enter the new name. This
will allow you to refer to the smoke object in the game LogicBricks, which will be
necessary a little bit later.

Figure 20-7. Change the name of the smoke object

 In the 3DWindow, press PAD_7 to return to TopView. Press ALT-Z to change the
DrawMode of the 3DWindow from wireframe to OpenGL textured. The smoke object
will turn black. Press FKEY to enter FaceSelectMode. The smoke object will turn
white. This mode lets you modify settings for each face of a mesh object. The single
face of the mesh is automatically selected.

Figure 20-8. PaintButtons

 With your mouse in the ButtonsWindow at the bottom of the screen, change the
view from EditButtons to the PaintFaceButtons by selecting the PaintFaceButtons
icon (Figure 20-8). Select the “Tex”, “Halo”, and “Alpha” buttons, and de-select the
“Collision” button (Figure 20-9). This tells Blender to display a texture on the face,
to rotate the face toward the camera, to use the alpha channel of the texture for
transparency, and not to calculate collisions with this face.

 IV

129 chapter 20 :: Squish the Bunny

 IV

130 Squish the Bunny :: chapter 20

Figure 20-9. Face settings for the smoke plane

 Apply a smoke texture to the face by clicking LMB the “Load” button in the
header of the Image Window, navigating to Tutorials/SquishBunny/texture/
smoke.tga, and click with MMB on it.

 You will see the texture appear in the ImageWindow. It is completely white, but the
transparency in the alpha channel will make it look like a puff of smoke or steam, as
you can see in the 3DWindow (Figure 20-10). Press FKEY to exit FaceSelectMode.

Figure 20-10. Smoke texture applied to the plane

20.5. Adding game logic to the smoke

 You now have a smoke puff object. The next step is to create the pieces of logic
which tells Blender how to use this object. With your mouse in the 3DWindow, press
SHIFT-0 to turn on layer 10, where the rocket object is located. You will see a very
small object labeled rocket. Select it with RMB (Figure 20-11).

 IV

131 chapter 20 :: Squish the Bunny

 IV

132 Squish the Bunny :: chapter 20

Figure 20-11. Selecting the rocket object

Change the view in the ButtonsWindow from PaintButtons to RealtimeButtons
by selecting the RealtimeButtons icon in the ButtonsWindow Header. The
RealtimeButtons display the game logic for the rocket.

 Click with LMB on the “Add” button at the top of the Sensors column to add
a sensor. Add a Controller and an Actuator in a similar way. Be sure to add the
Actuator by using the “Add” button beside the rocket button, and not the one for the
“hiteffect” object.

Connect the newly-created LogicBricks together in a chain by holding LMB and
dragging the mouse from the ball of the sensor to the doughnut of the controller, and
from the ball of the controller to the doughnut of the actuator (Figure 20-12).

Figure 20-12. Connecting LogicBricks

 Change the type of actuator from “Motion” to “Edit Object” by selecting it from
the MenuButton at the top of the brick (Figure 20-13). In the OB: button, type the
name of the object to be added (which is “smoke” in this case). Change the value

 IV

131 chapter 20 :: Squish the Bunny

 IV

132 Squish the Bunny :: chapter 20

in the “Time” button to “32” (Figure 20-14). This step tells Blender that each smoke
puff added to the scene by this actuator should be removed from the scene after 32
cycles of the game engine. In other words, each smoke puff lives for 32 game cycles.
The game engine makes 50 cycles per second, so our smoke puffs live about 2/3 of
a second. We could give them a longer life, but having a lot of additional objects in
the scene simultaneously can cause a big decrease in speed. You might be thinking
that the number 32 still sounds a bit arbitrary. 32 was chosen because it fits the
animation we will apply to the smoke in the next section.

Figure 20-13. Changing the Actuator type

Figure 20-14. Settings in the “Edit Object” Actuator

 After seeing the size of the rocket in comparison to the size of the smoke object, it
might be apparent that this smoke object is too big. Select the smoke object again
then press SKEY to begin changing its size. Continue reducing the size of the smoke
object by moving your mouse toward the center of the object until it is about one
fourth of its original size. As in RotationMode, you can monitor the exact value by
watching the Header of the 3DWindow.

 Objects must be on a hidden layer in order for the “Add Object” Actuator to add
them to the scene. Press MKEY to move the smoke object to a different layer. You
will see a grid representing the available layers.

 Press 0KEY to specify that it should be moved to layer 10, and press ENTER. Hide
layer 10 again by pressing SHIFT-0.

 You don’t have to return to the full-screen window to test the smoke trails. You
can run the game engine in this screen to see the results without viewing the title
screens again. Press PAD_0 in the 3DWindow to view the scene through the camera
(CameraView), then press PKEY as before to start the game engine. You should see a
trail of white smoke when you fire a rocket.

 IV

133 chapter 20 :: Squish the Bunny

 IV

134 Squish the Bunny :: chapter 20

20.6. Animating the Smoke

 The smoke puffs will look a lot better if they expand and fade away rather than
simply sitting still until they vanish suddenly.

Figure 20-15. Changing the window type to IpoWindow

 Exit the game, return to a wire frame view, turn on layer 10 again, and select the
smoke object (if it’s not still selected). Change the ImageWindow to an IpoWindow
by moving your mouse into the ImageWindow and pressing SHIFT-F6 or selecting
the IpoWindow icon from the WindowType drop down menu. This menu is accessed
by clicking on the WindowType icon at the far left side of the WindowHeader (Figure
20-15). If you don’t see the WindowType icon, you may need to scroll the header by
holding MMB and dragging it to the right.

Figure 20-16. The CurrentFrame Button

 We will animate the smoke object’s size by specifying key sizes at certain points
in the object’s timeline. Blender will plot a smooth transition between these values
(called keys or keyframes), and this transition will be visualized as an IpoCurve. The
IpoWindow will allow you to see and edit the IpoCurves which describe how the
smoke object changes over time. The vertical axis of the IpoWindow represents the
value being animated. The horizontal axis represents time in animation frames, each
of which is equal to 1/25th of a second.

 IV

133 chapter 20 :: Squish the Bunny

 IV

134 Squish the Bunny :: chapter 20

Figure 20-17. IpoCurves for the size of the smoke object

Look at the CurrentFrame Button in the
header of the ButtonsWindow (Figure
20-16) to be sure the current frame is
frame 1. If it is not, pressing SHIFT-LEF-
TARROW will cause Blender to jump
to frame 1. In the 3DWindow press
IKEY to call the “InsertKey” menu, and
select “Size”. Press RIGHTARROW until
the Current Frame Button shows that
you are on frame 16. Using the same
technique you used before, increase the
size of the smoke object to about 21⁄2
times its current size. Insert another size
key as before. As you insert these keys,
you can see curves being plotted in the
IpoWindow. To frame the IpoCurves so
that they are easier to see, press HOME
with your mouse in the IpoWindow
(Figure 20-17).

Figure 20-18. Object color channels

We will animate the color and opacity of
the smoke object by drawing IpoCurves
for the object color channels directly
into the IpoWindow. In order for these
curves to take effect, we must return
to FaceSelectMode (FKEY) and select
one additional setting for the face in the
FacePaintButtons. Activate the button
labeled “ObColor”. When you select this
button you will see the smoke turn black
because there are no values yet for the
object color.

 IV

135 chapter 20 :: Squish the Bunny

 IV

136 Squish the Bunny :: chapter 20

Figure 20-19. Object color Ipos

Leave FaceSelectMode and return your
attention to the IpoWindow. The labels
“ColR”, “ColG”, “ColB”, and “ColA”
refer to the red, green, blue, and alpha
object color channels, respectively
(Figure 20-18). Useful values for these
channels will are in the range from 0.0
to 1.0. Select the “ColA” channel by
clicking with the LMB on it. It will turn
white. Add the first key with CTRL-LMB
in the IpoWindow at frame 1.0 and value
1.0, and the second key by repeating
the procedure at frame 16 and value 0.0
(Figure 20-19).

 In a similar fashion, select each of the
“ColR”, “ColG”, and “ColB” channels in
turn, and to each one add a key at frame
1.0 with a value of about 0.8, giving the
smoke a light gray color.

Figure 20-20. Ipo Actuator settings

We have created some animation data for the object, and now we must add the logic
which will activate the animation. Return the ButtonsWindow to the RealtimeButtons
view. In the same manner we used for adding logic to the rocket, add a Sensor,
Actuator, and Controller to the smoke object and connect them together as before.
This time we will change the Actuator type to “Ipo”. Set the “Sta” (starting frame)
button to 1 and the “End” (end frame) button to 16, because that is the frame range
covered by our animation (Figure 20-20).

 Remember to hide Layer 10 before switching to CameraView again and starting the
game engine to see the results of your work.

 Try animating the “ColR”, “ColG”, and “ColB” channels in interesting ways. The file
Demos/Squish-the-Bunny.blend shows an example of a completed smoke effect.
It also demonstrates how an explosion effect can be achieved. The explosion effect
uses a complex mixture of Python programming, animation, and the LogicBricks in
Blender’s graphical game logic editor. Dissection of this file is left as an exercise for
the more adventurous readers.

 IV

135 chapter 20 :: Squish the Bunny

 IV

136 Squish the Bunny :: chapter 20

 V

139

 IV

140 Flying Buddha Memory Game :: chapter 21

 The advanced tutorials require a deeper understanding of the techniques behind the
scenes of Blender. For example, some basic knowledge of a programming language
or character animation is strongly recommended. The character animation tutorial
teaches you how to use the powerful tools of Blender and also gives some useful
tips. However, to create natural movements you will need to practice and observe
nature as well.

 As you found in the intermediate tutorials Blender scenes are provided to give a
framework for your experiments. Two of the scenes are puzzle type games and
contain complex python scripts.

 V

139

 IV

140 Flying Buddha Memory Game :: chapter 21

Chapter 21. Flying Buddha Memory Game

Figure 21-1. Buddha in action

 „Flying Buddha“ is a game designed by Freid Lachnowicz (artwork, models,
textures) and me (Carsten Wartmann , Python and game logic). The goal of the
game is to find pairs of gongs, like in the good old „Memory“ game. Besides that
it also includes some action elements, like the dragonfly which will become angry
(note the indicator on the top-right) if you jump too high. Also it requires some
good timing for the controls of the Buddha. The Buddha‘s goal, reaching „Zen“ is
completed when he has found all pairs. For competitions the time needed to solve
will be displayed on screen.

Table 21-1. Flying Buddha game controls

Controls Description

CURSOR KEYS Movement, you can steer in the air and
slow down your fall

SKEY Select a gong

 Load the game Demos/FlyingBuddha.blend from the CD and have fun playing it!

21.1. Accessing game objects

 Accessing individual objects from Blenders game engine is not trivial. In the
“FlyingBuddha” game, I needed the possibility of randomly shuffling the gongs at
game start.

 Generally speaking, it is a good thing to have as much game logic as possible
contained on the object that needs that logic. This helps when re-using this object
in the same or even different (Blender) scenes. So my first idea was to let the gongs
choose a new position themselves. But this soon turned out to be too complicated,
because of synchronizing problems and complex logic in the gongs.

 I then decided to use an object to control the shuffling process, and have the
information about the other objects including their positions is gathered by a Near
Sensor. This approach has many advantages. For example we can filter out whole
groups of objects with the “Property:” field, we are not bound to a fixed number of
objects etc.

21.1.1. LogicBricks

 Load the file Tutorials/Buddha/FlyingBuddha_simple.blend from the CD. It
contains a simpler version of the “Flying Buddha” game, which does not contain all
the intro scenes but is fully functional (press CTRL-LEFT for a full screen view). Use
this file to explore the GameLogic.

 The difference in the full game and this tutorial file are build-in debugging and
testing logic. Most notably is that you can test the re-shuffling of the gongs every
time by pressing SPACE. The logic for this is on the “Flamethrower” object (on layer
4).

 Have a look at Figure 21-2 the interesting parts in this context are the Sensors
“mixitbaby” and “near”. Both are connected to a Python Controller, which is then
connected to a Message Actuator. Also note the “shuffle” Property, this controls the
number of swapped pairs. The other Bricks are not related to the shuffling, they are
needed for other game parts.

Figure 21-2. LogicBricks for shuffling the gongs

As you can see, the Near Sensor only looks for objects carrying a Property with the
name “num”. Also make sure that the “Dist:” setting is high enough for the Near
Sensor to cover all objects.

 V

141 chapter 21 :: Flying Buddha Memory Game

 The Python Controller will be called by the Property Sensor as long the Property
“num” is in the range from 0 to 1000.

21.1.2. Shuffle Python script

 Open a TextWindow (SHIFT-F11, see Section 28.1) and choose the script “Shuffle”
with the MenuButton.

Figure 21-3. Script to shuffle the gongs

 1 # Shuffle script, swaps positions of two gongs

 2

 3 import GameLogic

 4

 5 def ranint(min,max):

 6 return(int(GameLogic.getRandomFloat()*(max+1-min)+min))

 7

 8 contr = GameLogic.getCurrentController()

 9 owner = contr.getOwner()

 10 key = contr.getSensor(“mixitbaby”)

 11 near = contr.getSensor(“near”)

 12 mess = contr.getActuator(“shuffled”)

 13

 14 # collects all gongs

 15 objs=near.getHitObjectList()

 16

 17 owner.shuffle = owner.shuffle - 1

 18 if owner.shuffle<0:

 19 GameLogic.addActiveActuator(mess,1)

 20 else:

 21 g1 = ranint(0,19)

 22 g2 = ranint(0,19)

 23

 24 pos1 = objs[g1].getPosition()

 25 pos2 = objs[g2].getPosition()

 26 objs[g1].setPosition(pos2)

 27 objs[g2].setPosition(pos1)

 IV

142 Flying Buddha Memory Game :: chapter 21

 V

143 chapter 21 :: Flying Buddha Memory Game

 IV

144 Game Character Animation using Armatures :: chapter 22

 So lets have a look into the script. The lines 1 to 12 contain the usual initialization,
and getting information about the Controller, Sensors, Actuators and the owner
which is needed to access Properties. The definition of a new function in line 5 is
used to make a random function which returns an integer number in a specified
range. This will save much typing later.

 In line 15 the first important step is done, using the method getHitObjectList() of
the “near” object we collect all game objects with the Near Sensor into the list objs.

 In line 17 we decrement the Property “shuffle” by one.

 The if-block beginning in line 18 executes the Message Sensor connected to the
Python Controller if the Property shuffle is less then zero, the message can then be
used to start the game.

 The else-block is executed when owner.shuffle is bigger than zero. This means that
gongs need to be swapped.

 In lines 21-22 we get two random numbers into the variables g1 and g2. The
numbers will be in a range from 0 to 19 because we have 4x5=20 gongs. g1 and
g2 are the indices of the gongs we want to swap in the next lines. Note that lists in
python start with the element “0”.

 In the lines 24-25 the script reads the positions of the gong-objects using the
random indices. The method used here is getPosition(). You can insert a “print
pos1,pos2” statement after line 25 to actually see the gong positions while running
the game.

Info: Python is an autodocumenting language. Use a “print dir(object)” statement to find
out what methods an object provides.

 The final two lines then swap the positions of the two gongs. The first obj indexed
as objs[g1] is set to pos2 which is the position of the first gong. Same for the other
gong. You can see the shuffling process in the game itself by looking at the gongs
from the backside.

 In this tutorial I showed you how to use Python in the game engine to access and
change objects in a scene. We used this approach to keep the game logic local on the
objects. If you are used to non object-oriented programming languages or systems,
this may appear strange to you at first .But this approach has many advantages. or
example, you don’t need to change the logic while editing your scenes or adding
objects, the script will even work when adding objects while running the game. Also,
re-using the logic in other scenes is much easier this way.

 V

143 chapter 21 :: Flying Buddha Memory Game

 V

143 chapter 21 :: Flying Buddha Memory Game

 IV

144 Game Character Animation using Armatures :: chapter 22

Chapter 22. Game Character Animation
using Armatures by Reevan McKay

Figure 22-1. Character animation in the game engine

 The new armature system opens up new possibilities for character animation in the
Blender game engine, but can be somewhat intimidating for new users. This tutorial
guides you through the steps involved in building an armature and creating actions
that can be used for smooth character animation in the game engine. Check the file
Demos/ePolice.blend for a decent example using the character from this tutorial.

22.1. Preparing the Mesh

 This tutorial assumes you have already modeled a character that you want to use in
an animation. Due to the high cost of calculating skeletal deformation, you will get
better performance by using fewer vertices in your meshes. It pays to spend some
time to optimize your models before continuing. You can use the file Tutorials/
CharacterAnimation/animation_tut.blend as base for this tutorial.

 Many aspects of blender’s game and animation engines depend on the fact that you
have modeled your character and armature using the correct coordinate system. The
FrontView (PAD1) should show the front of your character and armature. If this is not
the case, you should rotate your mesh so that the front of the character is displayed
in the FrontView, and apply the rotations as described in the next step.

 Before adding bones and animating a mesh, it is a good idea to make sure that the
base mesh object does not have any rotation or scaling on it. The easiest way to
do this is to select the mesh and apply any existing transformations with CTRL-A-
>”Apply size/rot”.

 IV

144 Game Character Animation using Armatures :: chapter 22

 V

145 chapter 22 :: Game Character Animation using Armatures

 IV

146 Game Character Animation using Armatures :: chapter 22

22.2. Working with Bones

 The next step is to build the skeleton or “armature” that will be used to deform
the character. A single armature object can contain an entire hierarchy of bones,
which makes editing animations easier. Add an armature object from the toolbox by
pressing SPACE->”ADD->Armature”.

 You will see a yellow bone appear. You can reposition its endpoint by moving the
mouse. When you are more or less satisfied with its position (you can still edit it
later), LMB to finalize the bone. At this point a new yellow bone will appear, attached
to the end of the first bone. You can continue to add connected bones in this fashion
(Figure 22-2). If you do not want to create another bone, you can press ESC to cancel
the current (yellow) bone. The bones you added previously will not be affected.

Figure 22-2. Adding bones

 Armatures have an EditMode similar to meshes. You can determine if you are
in EditMode or not by looking at the EditMode icon in the 3DWindow Header. As
with meshes, you can toggle in and out of EditMode using TAB. While you are in
EditMode, you can add and remove bones, or adjust the rest position of existing
bones. The rest position of your armature should correspond to the untransformed
position of the mesh you want to deform, and you should build the armature inside

 V

145 chapter 22 :: Game Character Animation using Armatures

 IV

146 Game Character Animation using Armatures :: chapter 22

the mesh, like a skeleton inside a human body.

 While you are in EditMode, you can reposition a bone by selecting one or more of
its endpoints and using the standard transformation tools such as scaling (SKEY),
rotation (RKEY) and translation (GKEY).

 You can also extrude selected points to form new bones with EKEY.

 One or more bones can be selected by selecting their start and end points. Like
meshes, you can select all of the bone points within a region by using BKEY or you
can select or deselect all bones in an armature with AKEY. You can also select an
entire bone chain at once by moving the mouse over any one of the chain’s points
and pressing LKEY. Selected bones can be deleted with XKEY or duplicated with
SHIFT-D.

22.3. Creating Hierarchy and Setting Rest Positions

22.3.1. Naming Bones

 It is a good idea to give meaningful names to the bones in your armature. This
not only makes it easier to navigate the hierarchy, but if you follow a few simple
naming rules, you can take advantage of the pose-flipping features. You can have
the bone names displayed on the model by selecting the armature, switching to the
EditButtons window (F9) and clicking the green “Draw Names” button.

 For symmetrical body elements such as arms or legs, it is a good idea to append
“.left” or “.right” (or simply “.l” and “.r”) suffixes to each part. This information
is used when flipping poses. An example of this would be to name the right arm
“Arm.Right” and the left one “Arm.Left”. Non-paired limbs such as the head or chest
do not need any special naming.

 When re-using the same action on different armatures, the engine looks at the
names of the bones in the armature, and the names of the animation channels in the
action. When there is a perfect match (capitalization matters), the animation data in
the action will be applied to the appropriate bone. If you want to take advantage of
action re-use, make sure that all your skeletons use the same naming convention.

 V

147 chapter 22 :: Game Character Animation using Armatures

 IV

148 Game Character Animation using Armatures :: chapter 22

22.3.2. Parenting Bones

 To establish parenting relationships within an armature, you must first make sure
the armature is in EditMode. Select only the bones you wish to modify or if you pre-
fer, select all bones with AKEY) and switch to the EditButtons with F9. You will see a
list (Figure 22-3) of the selected bones and next to each bone in the list you will see
a “child of” label and a pull-down menu. To make a bone the child of another bone,
simply select the appropriate parent from the pull-down menu. Note that the menu
only contains the names of bones that could be valid parents. This prevents you
from accidentally making a loop in parents (such as making an arm the parent of the
chest, which should be parent of the arm).

Figure 22-3. Parenting bones in the EditButtons

 To clear a parenting relationship, set the “child of” menu to the first (empty) choice
in the menu.

 Parenting is much easier if you have already named your bones, though it is not
necessary.

 Pressing the “IK” button (IK means here “inverse kinematics”) next to the parenting
menu will ensure that the root of the child is connected to the tip of the parent. This
is not so important for game models since the IK solver is not active in the game
engine, but it can be a useful way to define a bone “chain” which can be selected
with LKEY.

22.3.3. Basic Layout

 For a typical humanoid character, the following hierarchy is recommended (Figure
22-4). Some characters may benefit from additional bones for elements such as
flowing skirts or hair.

 V

147 chapter 22 :: Game Character Animation using Armatures

 IV

148 Game Character Animation using Armatures :: chapter 22

Figure 22-4. Typical bone layout for a humanoid character

22.3.4. Coordinate System Conventions

Before going on, it is a good idea to clear any rotation or scaling that may have been
assigned to the armature. Leave EditMode and with the armature object selected,
apply the transformations with CTRL-A.

The center point of the armature (represented by a small yellow or purple dot)
should be located on the ground, between the character’s feet. If this is not the case,
enter EditMode for the armature, select all bones with AKEY and move the bones so
that the center point is at the correct location.

 The final step before preparing the mesh for deformation is to ensure that the bones
in the armature have consistent orientations. Each bone is like an individual object
with its own coordinate system. You can see these coordinate systems by selecting
the armature object, switching to the EditButtons with F9 and clicking on the green
“Draw Axes” button.

 Generally you want to make sure that the Z-axis for each bone points in a consistent
direction. In most cases this means having the Z-axis point upwards. You can adjust
the roll angle of a bone by selecting it in EditMode, pressing NKEY and adjusting the
“roll” field.

 If you are going to be re-using actions on different armatures, it is very important
that both armatures have their bones oriented in the same way. If this is not the case,
you will notice a lot of strange flipping happening when you assign the action.

 V

149 chapter 22 :: Game Character Animation using Armatures

 IV

150 Game Character Animation using Armatures :: chapter 22

22.4. Establishing Mesh Deformation Vertex Groups

22.4.1. Creating Groups

 Once your armature is established, it is time to specify which bones will affect
which vertices of the mesh. This is done using vertex groups. To access the vertex
grouping features, select the mesh you will be deforming and enter EditMode.
Switch to the EditButtons and find the „Group“ column (Figure 22-5). Normally you
will have one vertex group for each bone in the armature. A vertex can belong to
more than one group, which is how smooth deformation is achieved. In order to be
recognized by the armature, the vertex groups must have exactly the same names as
the bones they are associated with (capitalization matters). To create a new vertex
group, click on the “NEW” button and edit the name in the text button that will
appear.

Figure 22-5. Group buttons in the EditButtons

 You can see a
list of all of the current deformation groups by clicking on the menu next to the
group name button (Figure 22-6). Selecting an item from this menu changes the
active deformation group.

Figure 22-6.

 You can assign vertices to the currently
active deformation group by selecting
vertices and clicking the “Assign”
button. The selected vertices will be
assigned to the active group with the
weight specified in the “Weight” slider.
You can remove vertices from the
current deformation group by selecting
them and clicking the “Remove” button.

 V

149 chapter 22 :: Game Character Animation using Armatures

 IV

150 Game Character Animation using Armatures :: chapter 22

 Create vertex groups for all of the
bones in your armature (making sure
the names of the groups and bones
match) and assign vertices to the
appropriate groups. Make sure that
every vertex is affected by at least
one bone. For this “first pass” of the
deformation process, try to keep things
simple by leaving the weight set to
“1.000” and avoid having vertices being
assigned to more than one group.

22.4.2. Attaching the Mesh to the Armature

 At this point, you are ready to attach the mesh to the armature. Make sure that
the mesh and the armature are correctly lined up and that you are not in EditMode
(Figure 22-7). Select the mesh first and while holding SHIFT, select the armature and
press CTRL-P->”Use Armature”.

Figure 22-7. Lined up Mesh and Armature

22.4.3. Testing the Skinning

 Once you have attached the mesh to the armature, you are ready to start testing
the deformation. It often takes a fair amount of tweaking to get satisfying results.
You want to avoid the excessive pinching or stretching that can occur when vertices
are not assigned to the right bones. We‘ll spend more time on that later. For now,
we‘ll take a look at how to pose the armature, which is a skill needed for testing the
deformation.

22.4.4. PoseMode

 In addition to EditMode, armatures have a PoseMode. This is used to position bones
within the armature. Setting keyframes in PoseMode defines an „action“ for the

 V

151 chapter 22 :: Game Character Animation using Armatures

 IV

152 Game Character Animation using Armatures :: chapter 22

armature, and the game engine will use these actions to animate the character.

Note: Note that only transformations performed in PoseMode will be incorporated
into the action (and therefore the game engine). Rotations, scalings and translations
performed in ObjectMode cannot be recorded in actions.

 You can toggle in and out of PoseMode by selecting an armature and pressing CTRL-TAB
or by clicking on the PoseMode icon in the 3DWindow Header bar. When in PoseMode,
the armature will be drawn in blue, with selected bones drawn in a lighter shade.

Figure 22-8. Armature in PoseMode

 To manipulate bones in PoseMode, select bones by using RMB on them and use
the standard transformation keys for scaling, rotation and translation. Note that
you cannot add or remove bones in PoseMode, and you cannot edit the armature’s
hierarchy.

 At any time, you can clear the pose you have made and return to the armature’s rest
position by clearing the rotation, scaling and translation components using ALT-R,
ALT-S and ALT-G respectively.

 You can set keyframes for a pose by selecting one or more bones and pressing IKEY.
and choosing one of the transformation channels to key from the pop up menu.

Figure 22-9. Selected “Arm.L” bone

 V

151 chapter 22 :: Game Character Animation using Armatures

 IV

152 Game Character Animation using Armatures :: chapter 22

22.5. Weight Editing

 In PoseMode, manipulate the limbs of the armature through their typical range
of motion and watch carefully how the mesh deforms. You should watch out for
deformation artifacts caused by any of the following:

 • Vertices that are not assigned to any bones can be easily detected by
 moving the root of the character’s hierarchy (usually the hips or pelvis)
 and seeing if any vertices are left behind.

 • Vertices that are not connected to the correct bones. If you move a limb
 (such as the arm) and notice vertex “spikes” protruding from other parts
 on the body, you will have to enter EditMode for the mesh and remove
 the offending vertices from the vertex group.

 • Pinching or creasing caused by inappropriate vertex weighting. This
 effect is most visible in the joints of limbs such as arms and legs. Often it
 is a symptom of vertices that are members of too many groups. The
 easiest way to fix this is to use the weight painting tool.

 V

153 chapter 22 :: Game Character Animation using Armatures

 IV

154 Game Character Animation using Armatures :: chapter 22

 To adjust vertex weights, you have the choice of manually assigning weights using
the method outlined above, or you can use the weight painting tool.

 This feature lets you “paint” bone influence onto the mesh and see the resulting
deformation in real-time. Make sure you are in wireframe or untextured mode with
ZKEY or SHIFT-Z. Access weight painting mode by selecting the mesh and clicking
on the weight-paint icon in the 3DWindow Header.

 In weight paint mode the mesh is displayed with a “false color” intensity spectrum
similar to the view from an infrared camera (Figure 22-10). Blue areas have little or
no influence from the current deformation group while red areas have full influence.
As you change the active deformation group in the editbuttons, you will see the
coloring on the model change.

Figure 22-10. Weight painted character

 Painting weights onto the model works somewhat similarly to vertex painting. LMB
paints onto the area beneath the cursor. Pressing UKEY undoes the last painting
operation. The cursor size and opacity settings in the VertexPaintButtons are used
to determine your brush settings and the “Weight” field in the EditButtons is used to
determine the “color” you are using (0.000 is the blue end of the spectrum and 1.000
is red).

 V

153 chapter 22 :: Game Character Animation using Armatures

 IV

154 Game Character Animation using Armatures :: chapter 22

 To remove weight from a group of vertices, set the vertex weight to 0.000 and paint
over the area. Note that you do not need to have the mesh in EditMode to change the
active deformation group, or to change the weight.

22.6. Animation

 Animation is very important for conveying the impression of life in a game world,
and for giving the player an immediate reward for his or her decisions. Game
characters typically have a set of animated actions they can perform, such as
walking, running, crawling, making attacks or suffering damage. With the armature
system, you can design each animation in a separate action and define which actions
play at which times using LogicBricks.

 Note that at the time of writing, animation constraints (including the IK Solver) do
not work in the game engine. This means that game animation must be done using
forward kinematics exclusively.

22.6.1. Multiple Actions and Fake Users

 If you want to create multiple actions in a blender file, remember that only one
action can be assigned to an armature at a time. If the other actions do not have any
users, they will not be saved when the file is saved. To prevent additional actions
from disappearing, you can add fake users .

 To create a fake user for an action, press SHIFT-F4. This lets you browse the various
objects and data blocks in the blender file. You may need to click on the “P” button
once or twice to find the root of the file’s structure, which should look like Figure 22-
11. From there, descend into the Action directory, and select the actions you want to
protect with RMB. Pressing FKEY will add a fake user to the selected items (indicated
by the capital “F” that appears next to the action name), preventing them from being
accidentally removed from the file.

 V

155 chapter 22 :: Game Character Animation using Armatures

 IV

156 Game Character Animation using Armatures :: chapter 22

Figure 22-11. Structure of the file in the DataSelectWindow

22.6.2. Creating an Idle Cycle

 The simplest action to create for a character is the „idle“ or „rest“ position. This
action can be played when the character is not doing any other action. A good idle
animation gives the game character the illusion of life by keeping it moving even
when the player is not actively issuing any control commands.

 Since the character is not moving through the level while playing the idle animation,
we don’t have to worry about synching the animation with the physics system.

 To create a new action, split the view by clicking with MMB on one of the window
borders, selecting “Split Area”, and LMB to set where the split will appear. Change
the type of the newly created window to ActionWindow by LMB on the WindowType
icon in the Header and choosing the topmost icon (Figure 22-12).

Figure 22-12. Switch to ActionWindow

 V

155 chapter 22 :: Game Character Animation using Armatures

 IV

156 Game Character Animation using Armatures :: chapter 22

 Go to a 3DWindow and select the armature you wish to animate. Enter PoseMode
and make sure that Blender is on frame 1 by changing the number in the frame
counter button in the header of the ButtonsWindow, or by using LEFTARROW and
DOWNARROW.

 You are now ready to make the first frame of the idle animation, using the
PoseMode techniques described earlier. What this pose looks like will depend
largely on the personality of your character and the type of game you are making.
Consider which actions might immediately follow the rest position. If the character
is supposed to be able to fire a weapon quickly, the rest position might involve
holding the weapon in a ready-to-fire stance. A less fast-paced game might have the
character adopt a more relaxed “at-ease” pose.

 When you are satisfied with the first frame, select all of the bones in PoseMode and
insert a rotation key by pressing IKEY->”Rot”. Next, deselect all bones and select
only the character’s root bone (usually the pelvis or hips) and insert a “Loc” key.
Normally only the root bone gets location keys, while all bones get rotation keys.

 When you insert keys, you should notice that new channels appear in the action
window (Figure 22-13). The yellow rectangles represent selected keyframes and grey
rectangles represent unselected keyframes. You can move keyframes in the action
window by selecting them and grabbing them with GKEY.

Figure 22-13. Keys in the ActionWindow

 Keyframes can be deleted by selecting them and pressing XKEY->”Erase selected
keys”.

 V

157 chapter 22 :: Game Character Animation using Armatures

 IV

158 Game Character Animation using Armatures :: chapter 22

 You can erase an entire action channel (all keyframes for a particular bone), by
selecting one or more action channels by SHIFT-RMB on the channel names in
the column at the left. Selected channels are displayed in blue, while unselected
channels are displayed in red. Pressing XKEY->”Erase selected channels” with the
mouse over the channel list deletes the selected channels.

 In order to create an action that loops smoothly, you will need to copy the first
frame and duplicate it as the last frame of the animation. There are two main ways of
doing this.

 • The first way is to select all of the bones in PoseMode and click on the
 “Copy Pose” button. This will copy the transformations from the selected
 bones into a temporary buffer. You can paste the pose at another
 keyframe by changing the frame and clicking the “Paste Pose” button.
 Note that this doesn’t necessarily set keyframes at the new point in time,
 unless you have activated the KeyAC option in the info window. If you
 have not activated KeyAC and you want to make keyframes after pasting
 the pose, you can press IKEY-”Avail”.

 • The second way to copy a block of keyframes is even easier. In the
 ActionWindow, select the vertical column of keyframes for all channels
 (hint: use BKEY to select with a bounding rectangle). Pressing SHIFT-D
 will duplicate the keyframes. You can move the block to a new point in the
 timeline and drop them by LMB. To ensure that the keyframes stay on
 whole frame increments, hold down CTRL while dragging.

 V

157 chapter 22 :: Game Character Animation using Armatures

 IV

158 Game Character Animation using Armatures :: chapter 22

 Idle animations tend to be fairly long, since the motion involved is typically subtle
and shouldn’t be seen to loop too often. The last frame should be at least 100 or
higher.

 While animating, you can “scrub” through the animation by holding the left mouse
button and dragging the mouse in the action window. This will move the position of
the green “current frame” indicator. In this way you can test parts of the animation
to make sure they play smoothly. You can also play the whole animation by moving
to the first frame and pressing ALT-A with the mouse over a 3DWindow. To see the
animation in a loop, set the “Sta” and “End” values in the Display Buttons (F10)
window to match the start and end frames of your loop.

 At this point you can go back in and add additional key frames between the start
and end. Remember to keep the motion reasonably subtle so that the player doesn’t
notice the repetitive nature of the action. Good elements to add are breathing
effects, having the character adjust its grip on any weapons or equipment, and slight
head turns.

 When you are satisfied with the action, give it a name by editing the name field in
the ActionWindow Header. Also make sure to create a fake user for the action to
prevent it from disappearing from the file when you create your next action.

22.6.3. Creating a Walk Cycle

 Another very important action is the character‘s walk cycle. This animation will be
used when the character is moving through the level. This animation is somewhat
more complicated, since we have to consider how the animation will interact with
the physics system.

 V

159 chapter 22 :: Game Character Animation using Armatures

 IV

160 Game Character Animation using Armatures :: chapter 22

 When creating the walk cycle, it is generally best to animate it in such a way that the
character seems to be walking on a treadmill. The forward motion will be provided
by the game’s physics system at run time.

 A walk-cycle actually consists of two steps. One for the left foot and one for the right
foot. For each step there are two main key frames: the striking pose and the crossing
pose (Figure 22-14). The striking pose represents the moment when one foot has just
been planted on the ground and the other is about to be lifted. The crossing pose
represents the moment when the two legs cross each other under the character’s
center of gravity: one foot is on the ground and moving backwards, while the other
is lifted and is moving forwards.

Figure 22-14. Striking and crossing

 To start creating this animation, switch to the action window and create a new blank
action by clicking on the Action menu and choosing “Add New”. This will create a
copy of any action that may have already been on the character. Name the action
and make sure the animation is blank, by moving the mouse over the channel list,
selecting all channels with AKEY and deleting them with XKEY->”Erase selected
channels”.

 For this animation, we’ll make a 24 frame walk cycle. We’ll set five key frames to
get a basic walking motion established. Once that’s done you can go back and add
additional key frames to smooth out the motion and improve the animation (Figure
22-15).

Figure 22-15. Keyframes for the walkcycle

 V

159 chapter 22 :: Game Character Animation using Armatures

 IV

160 Game Character Animation using Armatures :: chapter 22

 The first thing to do is to set the striking pose for the left foot. This pose will be
copied and pasted as the last frame of the action to ensure the animation loops
smoothly. Note that if you later make changes to this first frame, you should copy
those changes to the last frame again.

 The striking pose has the following characteristics:

 • The leading leg is extended and the foot is firmly on the floor.

 • The trailing foot has the toes on the floor and the heel has just left the
 ground.

 • The pelvis is lowered, to bring the feet down to the level of the floor.

 • If the walk cycle incorporates arm swinging, the arms oppose the legs. If
 the left leg is advanced, the left arm will be swung back, and vice versa.

 When you are satisfied with the pose, insert rotation keyframes for all bones, and
insert an additional location keyframe for the pelvis bone. Copy this pose to the
end of the animation loop, which will be frame 25. Frame 25 will not actually be
played however; we will end the loop at frame 24 when playing. Since frame 25 is a
duplicate of frame 1, the animation should play back seamlessly.

 If you built the character’s armature using the naming conventions and coordinate
systems recommended earlier in the tutorial, you can take advantage of the
character’s axial symmetry by copying the striking pose and pasting it flipped. To do
this, go to the first frame, and select all bones in PoseMode. Click the “Copy Pose”
button and set the active frame to the middle of the animation (in this case, frame
13). To paste the pose, click the “Paste Flipped” button.

 Set “Avail” keyframes for the appropriate bones. Note that if your animation does
not incorporate arm swinging (for example if the character is carrying a weapon),
you might choose to only select the pelvis and legs when copying and pasting the
pose. Otherwise, the character will seem to switch the weapon from one hand to the
other.

 V

161 chapter 22 :: Game Character Animation using Armatures

 IV

162 Game Character Animation using Armatures :: chapter 22

 The next task is to create the crossing pose. The first one will occur halfway
between the first frame of the animation and the flipped pose you just created (i.e.
frame 7). The crossing pose has the following characteristics:

 • The planted foot is underneath the character’s center of gravity.

 • The lifted foot is crossing past the planted leg.

 • The pelvis is raised to bring the feet up to the level of the floor.

 • If the arms are swinging, the elbows will be crossing each other at this
 point.

 Set “Avail” keyframes for all bones on this frame and copy the pose. Advance the
active frame to halfway between the end of the animation and the second striking
pose (frame 19) and paste the pose flipped.

 At this point test your animation loop. It is a good idea to go in and look at it frame
by frame with LEFTARROW and RIGHTARROW. If you see frames where the feet
seem to push through the floor, adjust the height of the pelvis accordingly and set
“Loc” keyframes, or adjust the rotation of the bones in the offending leg and set
“Rot” keyframes for them (Figure 22-16).

Figure 22-16. Bad positions of the character’s legs

 If you prefer working with IpoWindows, you can edit action channel Ipos directly,
though this is not always required. To do this, select an action channel in the
ActionWindow, make a window into an IpoWindow with SHIFT-F6 and click on the
ActionIpo icon in the IpoWindow Header.

 • Note that Action Ipos display rotations in quaternions instead of Euler
 angles. This gives nice predictable results when working with complex
 combinations of rotations, but can be a bit unusual to work with. The
 best tactic is to set the action value of the quaternions by inserting “Rot”
 keyframes in pose mode, and only using the IpoWindow to adjust the
 way the curves are interpolated.

 • To view several different Ipos in different windows, you can use the
 “pin” icon in the IpoWindow Header buttons to prevent the displayed
 Ipo from changing when you change object selection.

 When you are done, make sure to add a fake user for this action to prevent it from
getting lost when the file is saved.

 V

161 chapter 22 :: Game Character Animation using Armatures

 IV

162 Game Character Animation using Armatures :: chapter 22

22.7. Game Logic

 When adding game logic to your character, make sure to put the game logic on the
armature object itself, rather than on the mesh.

 If you are making your character a dynamic physics object, you may need to adjust
the center point of the armature based on the size of the dynamic object to make
sure that the character’s feet touch the floor. The character’s feet should touch the
bottom of the dotted dynamic object sphere (Figure 22-17).

Figure 22-17. Dynamic object for the character

 Generally speaking, you will need to add an Action Actuator for each different
action that your character can perform. For each actuator, you will need to set the
start and end frames of the animation, as well as the name of the action.

 Since version 2.21, Blender has the ability to create smooth transitions or to blend
between different game actions. This makes the motion of game characters appear
much more natural and avoids motion “popping”. To access this functionality, all
you have to do is adjust the “Blending” parameter in the Action actuator. This field
specifies how long it will take to blend from the previous action to the current one
and is measured in animation frames. A value of “0” indicates that no blending
should occur. Note that this blending effect is only visible in the game engine when
the game is run (Figure 22-18).

Figure 22-18. Blending Actions

 V

163 chapter 22 :: Game Character Animation using Armatures

 IV

164 Blenderball :: chapter 23

 Action actuators have many of the same playback modes as Ipo actuators, including
looping, playing, flippers and property- driven playback.

 You should try and design your game logic so that only one action is triggered at a
time. When multiple actions are active at the same time, the game engine can only
display one of them on any given frame. To help resolve ambiguity, you can use
the “Priority” field in the action actuator. Actions with lower numbers will override
actions with higher numbers.

 V

163 chapter 22 :: Game Character Animation using Armatures

 IV

164 Blenderball :: chapter 23

Chapter 23. Blenderball
 Blenderball is made by Joeri Kassenaar, based on an idea by W.P. van Overbruggen.
Blenderball is an action puzzle game where you have to guide a ball through a
dangerous maze. The gameplay can reach from the original puzzle to a two player
game, or just an image puzzle.

Figure 23-1. Blenderball game

 In the Blenderball game you have to guide the balls through a maze, avoiding traps
and dead ends. The goal is to fill all pockets at the end ring with balls.

Table 23-1. Blenderball controls

Controlls Description

ARROWLEFT Turn ring segment left

ARROWRIGHT Turn ring segment right

ARROWUP Go one ring segment up

ARROWDOWN Go one ring segment down

DEL Turn camera left

PgDn Turn camera right

AKEY Toggle automatic camera tracking

CTRL Track camera new

 V

165 chapter 23 :: Blenderball

 IV

166 Blenderball :: chapter 23

Table 23-2. Blenderball displays

Display Description

Balls left to solve level

Balls collected / Balls needed to solve level

Current level

Auto camera / manual camera indicator

 On the CD there are many assets you can use to start your own games based on
Blenderball. Look in the folder Tutorials/Assets/Blenderball/ for commented
sources of the Blender scenes, new images and sounds.

23.1. Customize the Blenderball image puzzle
Figure 23-2. Blenderball image puzzle

 V

165 chapter 23 :: Blenderball

 IV

166 Blenderball :: chapter 23

Table 23-3. Blenderball image puzzle controls

Controlls Description

ARROWLEFT Turn ring segment left

ARROWRIGHT Turn ring segment right

ARROWUP Go one ring segment up

ARROWDOWN Go one ring segment down

DEL Turn camera left

PgDn Turn camera right

AKEY Toggle automatic camera tracking

CTRL Track camera new

Table 23-4. Blenderball image puzzle displays

Display Description

Time left to solve puzzle

Current level

Left turns available

Right turns available

Auto camera / manual camera indicator

 Load Tutorials/Blenderball/Blenderball_imagegame_00.blend , this scene is
ready for changing the images. If you’d like to play a game first, switch to the full
screen view by pressing CTRL-LEFTARROW and the start the game engine with
PKEY. After that return to the editing layout by pressing CTRL-RIGHTARROW.

 Try to get all rings in a position that the image is shown correctly. Use the cursor
keys to select the ring and rotate the rings segment. There is a hard time limit.

 Now, prepare the images you want to use in your favorite 2-D image manipulation
program. Here are the guidelines to make images that fit into the game:

 • Images have to be square, containing two images side by side

 V

167 chapter 23 :: Blenderball

 IV

168 Blenderball :: chapter 23

 • For performance reasons you should not use textures bigger than
 512x512 pixels in size

 • Blender can use Targa (*.tga) and JPEG (*.jpg) images

Figure 23-3. Screen to change images

 V

167 chapter 23 :: Blenderball

 IV

168 Blenderball :: chapter 23

 Select one of the ring segments with RMB in the lower left window. Now press
FKEY to enter FaceSelectMode, the image to the right will update according to
your selection. Now press the “Replace” button in the ImageWindow to choose a
different image from Disk.

 If your image meets the requirements mentioned before, it should now be on the
rings and you can play your customized game.

23.2. Changing the levels of the Blenderball game

 The Blenderball tutorials are in the advanced section for a good reason. If you have
already had a look at the files, you’d have seen that the game logic is very complex
and mostly done with Python. It would have been possible to use the normal
LogicBricks for most tasks, but this would have lead to a file being very inflexible,
hard too overlook and difficult to change. Python gives us the option to create new
levels by changing a few lines of code.

 Load the Tutorials/Blenderball/Blenderball_00.blend file. Its window
layout is configured to work on new levels. Use CTRL-RIGHTARROW and CTRL-
LEFTARROW to switch between the folowing screens:

ChooseRings

 A Screen to select and choose the rings. It also contains the python script to
 where you can change the levels

Play

 This is the full screen view to play Blenderball

Work

 A Screen to play and change the Python level

 Switch to the screen “Work” and have a look at the TextWindow containing the
“InitRingRotation.py” script.

Figure 23-4. Python list holding inital ring rotations

 1 # List that holds initial rotations (L=left, R=right),

Levelnumber, Balls, number of pockets

 2 mixed= [“L0 R0 L0 R0 R0 R0 :01 :03 01”,

 3 “R0 R0 R0 R0 R0 R1 :02 :03 02”,

 4 “R1 R1 R1 L0 R1 R2 :03 :03 03”,

 5 “R2 R2 R1 R2 L0 R2 :04 :05 03”,

 6 “R3 R3 R1 R2 L1 L0 :05 :03 03”,

 V

169 chapter 23 :: Blenderball

 IV

170 Blenderball :: chapter 23

 7 “L1 L1 L1 R2 R1 R2 :06 :05 03”,

 8 “R4 L4 R4 L4 R4 L3 :07 :07 05”,

 9 “L1 L1 R0 L2 L1 R2 :08 :06 05”,

 10 “L0 R0 L1 R2 L0 L2 :09 :05 05”,

 11 “R1 R1 R1 R2 L1 R2 :10 :07 05”,

 12 “L4 R4 L2 R2 R1 R2 :11 :07 06”,

 13 “R2 L2 L5 L1 R0 R1 :12 :07 07”]

 Have a look at the list called “mixed”. It contains the initial rotations of the rings in
the levels line by line. So line two in the script (first line of the list) is used for the first
level. A “L” means rotation to the left, and a “R” to the right. The number behind the
letter determines how many steps the ring is rotated.

 Now change the first “R0” in the first line to “R1” and press PKEY with the mouse in
the textured CameraView to start the game engine. As opposed to the unmodified
game (there are no rotation of rings in the first level) is that the second ring is now
rotated to the right one step (looking from top to base).

 The numbers at the end of each line are: the level number, the number of balls you
have available to solve the level and how many pockets in the last ring have to be
filled to solve the level.

Figure 23-5. Python list for the ring layout

 1 # make a list of rings to spawn, originals are hidden in

layer 8

 2 ring_name= [

 3 [“3RingIn”, “3RingWarpOut”, “3RingFlipIn”,

“3RingFlipOut”, “3Ring2FlipWarp”, “3RingEndM”],

 4 [“3RingIn”, “3RingWarpOut”, “3RingFlipIn”,

“3RingKick”, “3Ring2FlipWarp”, “3RingEnd2”],

 5 [“3RingIn”, “3RingWarpOut”, “3RingExtraBall”,

“3RingFlipOut”, “3RingWarpIn”, “3RingEnd3”],

 6 [“3RingIn”, “3RingWarpOut”, “3RingForceBall”,

“4RingSturn”, “3Ring2FlipWarp”, “3RingEnd3”],

 7 [“3RingIn”, “3RingFlipIn”, “3RingExtraForce”,

“2RingSturn”, “3RingForceBall”, “5RingEnd3”],

 8 [“3RingInWarp”, “3RingForceBall”, “3RingKick”,

“3RingFlipOut”, “3RingWarpIn”, “3RingEnd3”],

 V

169 chapter 23 :: Blenderball

 IV

170 Blenderball :: chapter 23

 9 [“3RingIn”, “3RingKick”, “3RingFlipIn”,

“3RingTruw”, “3RingSideFlip”, “8RingEnd5”],

 10 [“3RingIn”, “3RingForceBall”, “3RingFlipIn”,

“1RingTruw”, “3RingSturn”, “8RingEnd5”],

 11 [“3RingIn”, “3RingKick”, “3RingFlipIn”,

“3RingTruw”, “3RingSideFlip”, “8RingEnd5”],

 12 [“3RingIn”, “3RingWarpOut”, “3RingFlipIn”,

“1RingTruw”, “3RingWarpIn”, “8RingEnd7”],

 13 [“3RingIn”, “3RingWarpOut”, “3RingExtraForce”,

“3RingTruw”, “3Ring2FlipWarp”, “8RingEnd7”],

 14 [“3RingWarpOut”,”3RingFlipIn”, “1RingTruw”,

“3RingIn”, “3RingWarpIn”, “8RingEnd7”],

 15 [“3RingIn”, “3RingFlipIn”, “3RingWarpOut”,

“3RingTruw”, “3RingWarpIn”, “8RingEnd7”]

 16]

 17

 The list in Figure 23-5 shows how the levels are made. Each ring has a unique
name and you can assemble new levels. Use the “ChooseRings” screen to look
at the rings. When you select a ring you will see the name in the Header of the
ButtonWindow (e.g. OB:3RingSideFlip). Use this name in the “ring_name” Python
list.

 For example, change the first line of the ring_name list to:

 1 [“3RingIn”, “3RingWarpOut”, “3RingKick”, “3RingSideFlip

”,”3Ring2FlipWarp”, “3RingEndM”],

 You can add completely new levels by adding new lines to both of the Python lists.

 This tutorial shows how to use advanced Python scripting to build complex game
logic. However, it also shows how easy it is to edit the game levels in just a few
single lines of text. This can be done by anyone who knows how to use a text-editor.
Plus, it also helps when loading levels from a disk or even from the Internet. Last but
not least it provides a very flexible interface for a separate level-editor! You don’t
have to deal with a complex file-structure just produce a simple human-readable
text file.

 VI

173 Reference

VI

174Reference

 The reference section will be your guide to exploring the Blender 3-D game engine
further after following the tutorials. To learn modeling and linear animation refer to
the „Official Blender 2.0 guide“.

 VI

173 Reference

VI

174Reference

Chapter 24. Blender Windows and Buttons
 This section describes the most important Blender-Windows and Buttons you
need to create interactive content. Because Blender is a fully integrated application
for creating both linear animations and stills plus real-time 3-D content, there are
numerous buttons and window types that need to be explained. To explore the linear
capabilities of Blender please refer to our other documentation (Section 29.5).

24.1. The 3DWindow

 The 3DWindow is the most important window for working and navigating inside 3-D
scenes. It is also used to play the interactive content. So a good knowledge of the
options and capabilities will help you to make your scenes or explore scenes from
the CD.

Figure 24-1. The 3DWindow canvas

 The standard 3DWindow has:

A grid.The dimensions (distance between the gridlines) and resolution (number of
lines) can be set with the ViewButtons. This grid is drawn as infinite in the presets
of ortho ViewMode (Top, Front, Right view). In the other views, there is an finite
„floor“. Many of the Blender commands are adjusted to the dimension of the grid,
to function as a standard unit. Blender works best if the total „world“ in which the
user operates continually falls more or less within the total grid floor (whether it is
a space war or a logo animation).

Axes in color codes. The reddish line is the X axis, the green line is the Y axis, the
blue line is the Z axis. In the Blender universe, the “floor” is normally formed by
the X and Y axes. The height and „depth“ run along the Z axis.

 VI

175 Reference

VI

176Reference

A 3DCursor. This is drawn as a black cross with a red/white striped circle. A left
mouse click (LMB) moves the 3DCursor. Use the SnapMenu (SHIFT+S) to give the
3DCursor a specific location. New Objects are placed at the 3DCursor location.

Layers (visible in the header buttons). Objects in “hidden” layers are not displayed.
All hotkey commands and tools in Blender take the layers into account: Objects in
the hidden layers are treated as not selected. See the following paragraph as well.

ViewButtons. Separate variables can be set for each 3DWindow, e.g for the grid or
the lens. Use the SHIFT+F7 hotkey or the WindowType button in the 3DHeader. The
ViewButtons are explained in detail elsewhere in this manual.

24.1.1. 3DHeader

WindowType (IconMenu)
 As with every window header, the first button allows you to set the window type.

Full Window (IconTog)
Maximize the window, or return it to its original size; return to the old screen setting.
Hotkey: ALT-CTRL+UPARROW

Home (IconBut)
All Objects in the visible layers are displayed completely, centered in the window.
Hotkey: HOMEKEY.

Layers (TogBut)

These 20 buttons show the available layers. In fact, a layer is nothing more than a
visibility flag. This is an extremely efficient method for testing Object visibility. This
allows the user to divide the work functionally.

For example: Cameras in layer 1, temporary Objects in layer 20, lamps in layers
1, 2, 3, 4 and 5, etc. All hotkey commands and tools in Blender take the layers into
account. Objects in ‘hidden’ layers are treated as unselected.

Use a left mouse click for the buttons, SHIFT+LMB for extend select layers.

Hotkeys: 1KEY, 2KEY, etc. 0KEY, MINUSKEY, EQUALKEY for layers 1,2,3,4, etc. Use
ALT>+(1KEY, 2KEY, ... OKEY) for layers 11, 12, ... 20. Here, as well, use SHIFT+hotkey
for extend select.

Lock (TogBut)

 Every 3DWindow has it’s own layer setting and active Camera. This is also true for
a Scene: here it determines which layers - and which camera - are used to render a
picture. The lock option links the layers and Camera of the 3DWindow to the Scene

 VI

175 Reference

VI

176Reference

and vice versa: the layers and Camera of the Scene are linked to the 3DWindow. This
method passes a layer change directly to the Scene and to all other 3DWindows with
the “Lock” option ON. Turn the “Lock” OFF to set a layer or Camera exclusively for
the current 3DWindow. All settings are immediately restored by turning the button
back ON.

LocalView (IconTog)

LocalView allows the user to continue working with complex Scenes. The
currently selected Objects are taken separately, centered and displayed
completely. The use of 3DWindow layers is temporarily disabled.
Reactivating this option restores the display of the 3DWindow in its original
form. If a picture is rendered from a LocalView, only the Objects present are
rendered plus the visible lamps, according to the layers that have been set.
Activating a new Camera in LocalView does not change the Camera used by
the Scene. Normally, LocalView is activated with the hotkey PAD_SLASH.

View Mode (IconMenu)

 A 3DWindow offers 3 methods for 3-D display:

Orthonormal
 Blender offers this method from every view, not just from the
 X, Y or Z axes.

Perspective
 You can toggle between orthonormal and perspective with the
 hotkey PAD_5.

 Camera
 This is the view as rendered. Hotkey: PAD_0.

View Direction (IconMenu)
 These pre-sets can be used with either ortho or perspective. Respectively,
these are the:

TopView, hotkey PAD_7

FrontView, hotkey PAD_1

RightView, hotkey PAD_3

The hotkeys combined with SHIFT or (CTRL) give the opposite view
direction. (Down View, Back View, Left View)

 VI

177 Reference

VI

178Reference

Draw Mode (IconMenu)
 Set the drawing method. Respectively:

BoundBox.
The quickest method, for animation previews, for example.

WireFrame.
Objects are drawn assembled of lines.

Solid.
Z-buffered with the standard OpenGL lighting. Hotkey: ZKEY, this
toggles between WireFrame and Solid.

Shaded.
This is as good an approach as is possible to the manner in which
Blender renders - with Gouraud shading. It displays the situation from
a single frame of the Camera. Hotkey: SHIFT+Z. Use CTRL+Z to force
a recalculation of the view.

Textured.
Realtime textures (UV textures) are shown.

Objects have their own Draw Type, independent of the window setting (see
„EditButtons->DrawType“). The rule is that the minimum DrawMode is
displayed.

View Move (IconBut, click-hold)

 Move the mouse for a view translation. This is an alternative for SHIFT+MMB.

View Zoom (IconBut, click-hold)

 Move the mouse vertically to zoom in and out of the 3DWindow. This is an
alternative for CTRL+MMB.

 These buttons determine the manner in which the Objects (or vertices) are rotated
or scaled.

 Around Center (IconRow)
 The midpoint of the boundbox is the center of rotation or scaling. Hotkey:
COMMAKEY.

 Around Median (IconRow)
 The median of all Objects or vertices is the center of rotation or scaling.

 Around Cursor (IconRow)
 The 3DCursor is the midpoint of rotation or scaling. Hotkey: DOTKEY.

 VI

177 Reference

VI

178Reference

 Around Individual Centers (IconRow)
All Object’s rotate or scale around their own midpoints. In EditMode: all vertices
rotate or scale around the Object midpoint.

EditMode (IconTog)

 This button starts or terminates EditMode. Hotkey: TAB or ALT+E.

 VertexPaint (IconTog)
 This button starts or terminates VertexPaintMode. Hotkey: VKEY.

 FaceSelect (IconTog)
 This button starts or the FaceSelect mode. Hotkey: FKEY.

 Proportional Vertex Editing Tool (IconTog)
 The Proportional Vertex Editing tool can be activated with the Icon in 3DWindow
header, or OKEY.

The Proportional Editing tool is then available in Editmode for all Object types. This
tool works like a “magnet”, you select a few vertices and while editing (grab, rotate,
scale) the surrounding vertices move proportionally with it. Use the NumPad-plus
and NumPad-minus keys to adjust the area of influence, this can be done “live” while
editing.

You can choose between a sharp fallof and a smooth falloff.

 OpenGL Renderer (IconTog)
A left mouse click renders the current view in OpenGL . CTRL-LMB renders a
animation in OpenGL. The rendered pictures are saved as in the DisplayButtons
indicated.

24.1.2. The Mouse

 The mouse provides the most direct access to the 3DWindow. Below is a complete
overview:

Left mouse
 Position the 3DCursor.

CTRL + left mouse
 In EditMode: create a new vertex.

left mouse (click-hold-draw)
These are the Gestures. Blender’s gesture recognition works in three ways:

 VI

179 Reference

VI

180Reference

 Draw a straight line: start translation mode (Grabber)

 Draw a curved line: start rotation mode.

 Draw a V-shaped line: start scaling mode.

 Middle mouse (click-hold)
 Rotate the direction of view of the 3DWindow. This can be done in two ways (and
can be set in the UserMenu):

 The trackball method. In this case, where in the window you start the mouse
movement is important. The rotation can be compared to rotating a ball, as if
the mouse grasps and moves a tiny miniscule point on a ball and moves it. If the
movement starts in the middle of the window, the view rotates along the horizontal
and vertical window axes. If the movement begins at the edge of the window, the
view rotates along the axis perpendicular to the window.

 The turntable method. A horizontal mouse movement always results in a rotation
around the global Z axis. Vertical mouse movements are corrected for the view
direction, and result in a combination of (global) X and Y axis rotations.

 SHIFT+MMB (click-hold)
Translate the 3DWindow. Mouse movements are always corrected for the view
direction.

 CTRL+MMB (click-hold)
Zoom in/out on the 3DWindow.

 Right mouse
Select Objects or (in EditMode) vertices. The last one selected is also the active
one. This method guarantees that a maximum of 1 Object and 1 vertex are always
selected. This selection is based on graphics (the wireframe).

 SHIFT+RMB
 Extend select Objects or (in EditMode) vertices. The last one selected is also the
active one. Multiple Objects or vertices may also be selected. This selection is based
on graphics too (the wireframe).

 CTRL+RMB
 Select Objects on the Object-centers. Here the wireframe drawing is not taken into
account. Use this method to select a number of identical Objects in succession, or to
make them active.

 SHIFT+CTRL+RMB
 Extend select Objects. The last Object selected is also the active one. Multiple
Objects can be selected.

 Right mouse (click-hold-move)
Select and start translation mode, the Grabber. This works with all the selection
methods mentioned.

 VI

179 Reference

VI

180Reference

24.1.3. NumPad

 The numeric keypad on the keyboard is reserved for view related hotkeys. Below is
a description of all the keys with a brief explanation.

 PAD_SLASH
 LocalView. The Objects selected when this command is invoked are taken
separately and displayed completely, centered in the window. See the description of
3DHeader->LocalView.

 PAD_STAR
 Copy the rotation of the active Object to the current 3DWindow. This works as if this
Object is the camera, without including the translation.

 PAD_MINUS, PAD_PLUS
 Zoom in, zoom out. This also works for Camera ViewMode.

 PAD_DOT
 Center and zoom in on the selected Objects. The view is changed in a way that can
be compared to the LocalView option.

 PAD_5
 Toggle between perspective and orthonormal mode.

 PAD_9
Force a complete recalculation (of the animation systems) and draw again.

 PAD_0
View from the current camera, or from the Object that is functioning as the camera.

 CTRL+PAD_0
 Make the active Object the camera. Any Object can be used as the camera.
Generally, a Camera Object is used. It can also be handy to let a spotlight function
temporarily as a camera when directing and adjusting it. ALT+PAD_0 reverts to the
previous camera. Only Camera Objects are candidates for the “previous camera”
command.

 PAD_7
TopView. (along the negative Z axis, Y up)

 SHIFT+PAD_1
 DownView. (along the positive Z axis, Y up)

 PAD_1
FrontView. (along the positive Y axis, Z up)

 VI

181 Reference

VI

182Reference

 SHIFT+PAD_1
BackView. (along the negative Y axis, Z up)

 PAD_3
RightView. (along the negative X axis, Z up)

 SHIFT+PAD_3
LeftView. (along the positive X axis, Z up)

 PAD_2, PAD_8
Rotate using the turntable method. Depending on the view, this is a rotation around
the X and Y axes.

 PAD_4 PAD 6
 Rotate using the turntable method. This is a rotation around the Z axis.

 SHIFT+(PAD_2, PAD_8)
Translate up or down; corrected for the current view.

 SHIFT+(PAD_4,PAD_6)
Translate up or down; correct for the view.

24.2. IpoWindow
Figure 24-2. The IpoWindow

 The IpoWindow allows you to visualize and manipulate animation curves which
can control nearly every aspect of an animation inside Blender. For the Blender
GameEngine, the most important aspects are the positions or rotations of objects,
and the color of objects.

 VI

181 Reference

VI

182Reference

24.2.1. IpoHeader

WindowType (IconMenu)
 As with every window header, the first button enables you to set the window type.

 Full Window (IconTog)
 Maximize the window or return it to the previous window display size; return to the
old screen setting. HotKey: (ALT-)CTRL+UPARROW

 Home (IconBut)
 All visible curves are displayed completely, centered in the window. HotKey:
HOMEKEY.

IpoKeys (IconTog)

 This is a drawing mode for the animation curves in the IpoWindow (the IpoCurves).
Yellow vertical lines are drawn through all the vertices of the curves. Vertices of
different curves at the same location in “time” are joined together and can easily be
selected, moved, copied or deleted.

 This method adds the ease of traditional key framing to the animation curve system.

 For Object-Ipos, these IpoKeys can also be drawn and transformed in the
3DWindow. Changes in the 3-D position are processed immediately in the IpoCurves.

Ipo Type

 Depending on the active Object, the various Ipo systems can be specified with these
buttons.

 Object Ipo (IconRow)
 Settings, such as the location and rotation, are animated for the active Object. All
Objects in Blender can have this Ipo block.

 Material Ipo (IconRow)
 Settings of the active Material are animated for the active Object.

 A NumBut is added as an extra feature. This button indicates the number of the
active Texture channel. Eight Textures, each with its own mapping, can be assigned
per Material. Thus, per Material-Ipo, 8 curves in the row “OfsX, OfsY, ...Var” are
available.

 Speed Ipo (Icon Row)
 If the active Object is a path Curve, this button can be used to display the speed-Ipo.

 Lamp Ipo (IconRow)
 If the active Object is a Lamp, this button can be used to animate light settings.

 VI

183 Reference

VI

184Reference

 World Ipo (IconRow)
 Used to animate a number of settings for the WorldButtons.

 VertexKey Ipo (IconRow)
 If the active Object has a VertexKey, the keys are drawn as horizontal lines. Only one
IpoCurve is available to interpolate between the Keys.

 Sequence Ipo (IconRow)
 The active Sequence Effect can have an IpoCurve.

 The DataButtons can be used to control the Ipo blocks themselves.

Ipo Browse (MenuBut)

Choose another Ipo from the list of available Ipos. The option “Add New” makes a
complete copy of the current Ipo. This is not visible; only the name in the adjacent
button will change. Only Ipos of the same type are displayed in the menu list.

 IP: (TextBut)
 Give the current Ipo a new and unique name. After the new name is entered, it
appears in the list, sorted alphabetically.

 Users (NumBut)
 If this button is displayed, there is more than one user for the Ipo block. Use the
button to make the Ipo “Single User”.

 Unlink Ipo (IconBut)
 The current Ipo is unlinked.

Copy to Buffer (IconBut)
 All selected IpoCurves are copied to a temporary buffer.

Paste from Buffer (IconBut)
 All selected channels in the IpoWindow are assigned an IpoCurve from the
temporary buffer. The rule is: the sequence in which they are copied to the buffer
is the sequence in which they are pasted. A check is made to see if the number of
IpoCurves is the same.

 Extend mode Constant (IconBut)
 The end of selected IpoCurves are horizontally extrapolated.

 VI

183 Reference

VI

184Reference

 Extend mode Direction (IconBut)
 The ends of selected IpoCurves continue extending in the direction in which they
end.

 Extend mode Cyclic (IconBut)
 The full length of the IpoCurve is repeated cyclically.

 Extend mode Cyclic Extrapolation (IconBut)
 The full length of the IpoCurve is extrapolated cyclically.

 View Zoom (IconBut, click-hold)
 Move the mouse horizontally or vertically to zoom in or out on the IpoWindow. This
is an alternative for CTRL+MMB.

 View Border (IconBut)
 Draw a rectangle to indicate what part of the IpoWindow should be displayed in the
full window.

 Lock (TogBut)
 This button locks the update of the 3DWindow while editing in the IpoWindow, so
you can see changes made to the Ipo in real-time in the 3DWindow. This option
works extremely well with relative vertex keys.

24.2.2. IpoWindow

Figure 24-3. The IpoWindow

 VI

185 Reference

VI

186Reference

 The IpoWindow shows the contents of the Ipo block. Which one depends on the Ipo
Type specified in the header.

 The standard IpoWindow has a grid with the time expressed horizontally in frames
and vertical values that depend on the channel. There are 2 sliders at the edge of the
IpoWindow. How far the IpoWindow is zoomed in can be seen on the sliders, which
can also be used to move the view.

 The right-hand part of the window shows the available channels.

 To make it easier to work with rotation-IpoCurves, they are displayed in degrees
(instead of in radials). The vertical scale relation is: 1.0 “Blender unit” = 10 degrees.

 In addition to the IpoCurves, the VertexKeys are also drawn here. These are
horizontal blue lines; the yellow line visualizes the reference Key.

Each channel can be operated with two buttons:

 IpoCurve Select (TogBut)
 This button is only displayed if the channel has an IpoCurve. The button is the same
color as the IpoCurve. Use the button to select IpoCurves. Multiple buttons can be
(de)selected using SHIFT+LMB.

 Channel Select (TogBut)
 A channel can be selected whether there is an IpoCurve or not. IpoCurves are
only drawn for selected channels. Multiple channels can be (de)selected using
SHIFT+LMB.

24.2.3. The Mouse
 CTRL+LMB
 Create a new vertex. These are the rules:

 There is no IpoBlock (in this window) and one channel is selected: a new
IpoBlock is created along with the first IpoCurve with one vertex.

 There is already an Ipolock, and a channel is selected without an IpoCurve: a new
IpoCurve with one vertex is added

 Otherwise a new vertex is simply added to the selected IpoCurve.

 This is not possible if multiple IpoCurves are selected or if you are in EditMode.

 Middle mouse (hold-move)
 Depending on the position within the window:

 On the channels ; if the window is not high enough to display them completely,
the visible part can be shifted vertically.

 On the sliders; these can be moved. This only works if you are zoomed in.

 For the rest of the window; the view is translated.

 VI

185 Reference

VI

186Reference

 CTRL+MMB (hold-move)
 Zoom in/out on the IpoWindow. You can zoom horizonally or vertically using
horizontal and vertical mouse movements.

 Right mouse
 Selection works the same here as in the 3DWindow: normally one item is selected.
Use SHIFT to expand or reduce the selection (extend select).

 If the IpoWindow is in IpoKey mode, the IpoKeys can be selected.

 If at least 1 of the IpoCurves is in EditMode, only its vertices can be selected.

 VertexKeys can be selected if they are drawn (horizontal lines)

 The IpoCurves can be selected.

 Right mouse (click-hold-move)
 Select and start translation mode, i.e. the Grabber. The selection can be made using
any of the four selection methods discussed above.

 SHIFT+RMB
 Extend the selection.

24.3. EditButtons
Figure 24-4. The EditButtons (F9)

 The settings in this ButtonsWindow visualize the ObData blocks and provide tools
for the specific EditModes. Certain buttons are redrawn depending on the type of
ObData. The types that can be used in the Blender game engine are: Mesh, Empty,
Armature, Lamp and Camera. Options and Buttons that are not appropriate for the
Blender game engine are not described here.

 The DataButtons in the header specify which block is visualized. Mesh is used as an
example here, but the use of the other types of ObData is identical.

 Mesh Browse (MenuBut)
 Selects another Mesh from the list provided.

 ME: (TextBut)
 Gives the current block a new and unique name. The new name is inserted in the list
and sorted alphabetically.

 VI

187 Reference

VI

188Reference

 Users (But)
 If the block is used by more than one Object, this button shows the total number
of Objects. Press the button to change this to “Single User”. An exact copy is then
created.

 OB: (TextBut)
 Gives the current Object a new and unique name. The new name is inserted in the
list and sorted alphabetically.

 This group of buttons specifies Object characteristics.

 DrawType (MenuBut)

 Choose a preference for the standard display method used in the 3DWindow from
the list provided. The “DrawType” is compared with the “DrawMode” set in the
3DHeader; the least complex method is the one actually used.

 The types, listed in increasing degrees of complexity, are:

 Bounds. A bounding object is drawn in the dimensions of the object.

 Wire. The wire model is drawn.

 Solid. Zbuffered with the standard OpenGL lighting.

 Shaded. This display, which uses Gouraud shading, is the best possible way to
view the manner in which Blender renders. It depicts the situation of a single
frame from the Camera‘s point of view. Use CTRL+Z to force a recalculation.

 The „Draw Extra“ options are displayed above the selected DrawType.

 BoundBox (TogBut)

 A bounding object is displayed in the dimensions of the object.

 VI

187 Reference

VI

188Reference

 Box (MenuBut)
 With this MenuButton you can choose between different bound-objects.

 Axis (TogBut)
 The axes are drawn with X, Y and Z indicated.

 Name (TogBut)
 The name of the Object is printed at the Object centre.

 The layer setting of the Object. Use SHIFT-LMB to activate multiple layers.

 Set Smooth (But)
 This sets a flag which specifies that rendering must be performed with normal
interpolation. In EditMode, it works on the selection. Outside EditMode everything
becomes “Smooth”.

 Set Solid (But)
 This sets a flag which indicates that rendering must be “Solid”. In EditMode this
works on the selection. Outside EditMode everything becomes “Solid”.

24.3.1. EditButtons, Mesh

 AutoTexSpace (TogBut)
 This option automatically calculates the texture area, after leaving EditMode. You
can also specify a texture area yourself (outside EditMode, in the 3DWindow; TKEY),
in which case this option is turned OFF.

 No V.Normal Flip (TogBut)
 Because Blender normally renders as faces double-sided, the direction of the
normals (towards the front or the back) is automatically corrected during rendering.
This option turns this automatic correction off, allowing “smooth” rendering of
faces that have sharp angles (smaller than 100 degrees). Be sure the face normals
are consistently set in the same direction (CTRL+N in EditMode). The direction of
the normals is especially important for real-time models, because the game engine
renders them single sided for reasons of speed.

 VI

189 Reference

VI

190Reference

 AutoSmooth (TogBut)
 Automatic smooth rendering (not faceted) for meshes. Especially interesting for
imported Meshes done in other 3-D applications. The Button “Set smooth” also has
to be activated to make “Auto Smooth” work. The smoothing isn’t displayed in the
3DWindow.

 Degr: (NumBut)

 Determines the degree to which faces can meet and still get smoothed out by “Auto
Smooth”.

 Make VertCol (But)

 A color can be specified per vertex. This is required for the VertexPaint option. If
the Object DrawType is “Shaded”, these colors are copied to the vertex colors. This
allows you to achieve a radiosity-like effect (set MaterialButtons->VertCol ON). If the
Mesh is “Double Sided”, this is automatically turned off.

 Make TexFace (But)
 Assigns a texture per face. This will be set automatically when you use the UV-
Editor to texture a real-time model. Unchecking this option clears all UV coordinates.

 Decimator (NumSli)

 Decimator (NumSli)
 This slider will reduce your mesh faces to the number you indicate with the slider.
Watch your mesh closely to see if the number of faces you demand is still enough to
retain the desired shape.

 Note: Mesh decimation will remove UV coordinates and vertexcolors!

 Cancel (Button)
 Resets the mesh to its original state before decimation.

 Apply (Button)

 Decimates according to the value indicated in the decimation slider. After using
“Apply” there is no way back!

 VI

189 Reference

VI

190Reference

 Extrude (But)
 The most important of the Mesh tools: Extrude Selected. In EditMode “Extrude”
converts all selected edges to faces. If possible, the selected faces are also
duplicated. Grab mode starts immediately after this command is executed. If there
are multiple 3DWindows, the mouse cursor changes to a question mark. Click in the
3DWindow in which “Extrude” must be executed. HotKey: EKEY.

 Screw (But)

 This tool starts a repetitive “Spin” with a screw-shaped revolution on the selected
vertices. You can use this to create screws, springs or shell-shaped structures.

 Spin (But)
 The “Spin” operation is a repetitively rotating “Extrude”. This can be used in
every view of the 3DWindow, the rotation axis always goes through the 3DCursor,
perpendicular to the screen. Set the buttons “Degr” and “Steps” to the desired
value.

 If there are multiple 3DWindows, the mouse cursor changes to a question mark.
Click in the 3DWindow in which the “Spin” must occur.

 Spin Dup (But)
 Like “Spin”, but instead of an “Extrude”, there is duplication.

 Degr (NumBut)
 The number of degrees by which the “Spin” revolves.

 Steps (NumBut)
 The total number of “Spin” revolutions, or the number of steps of the “Screw” per
revolution.

 Turns (NumBut)
 The number of revolutions the “Screw” turns.

 Keep Original (TogBut)
 This option saves the selected original for a “Spin” or “Screw” operation. This
releases the new vertices and faces from the original piece.

 Clockwise (TogBut)
 The direction of the “Screw” or “Spin”, can be clockwise, or counterclockwise.

 Extrude Repeat (But)
 This creates a repetitive “Extrude” along a straight line. This takes place
perpendicular to the view of the 3DWindow.

 Offset (NumBut)
 The distance between each step of the “Extrude Repeat”. HotKey: WKEY.

 VI

191 Reference

VI

192Reference

 Vertex Group Buttons

 This group of Buttons is meant for assigning vertices and weights
to the bones of an Armature. Besides the “Weight” Button all
options are only drawn when the active object is in EditMode.

 Group Browse (MenuBut)
 Browse the defined groups of vertices for this mesh. The text button shows the
actual vertex group name. Click it with LMB to edit the name.

 Weight (NumBut)
 Sets the weight for groups and for use in WeightPaint

 New (But)
 Creates a new vertex group

 Delete (But)
 Deletes the actual vertex group

 Assign (But)
 Assigns the selected vertices to the actual group

 Remove (But)
 Removes selected vertices from the actual group

 Select (But)
 Selects all vertices from the actual group

 Deselect (But)
 Deselects all vertices from the actual group

 Intersect (But)
 Select the faces (vertices) that need an intersection and press this
button. Blender now intersects all selected faces with each other.

 Split (But)
 In EditMode, this command “splits” the selected part of a Mesh
without removing faces. The split sections are no longer connected
by edges. Use this to control smoothing. Since the split parts can
have vertices in the same position, we recommend that you make
selections with the LKEY. HotKey: YKEY.

 VI

191 Reference

VI

192Reference

 To Sphere (But)

 All selected vertices are blown up into a spherical shape, with the 3DCursor as a
midpoint. A requester asks you to specify the factor for this action. HotKey: WKEY.

 Beauty (TogBut)
 This is an option for “Subdivide”. It splits the faces into halves lengthwise,
converting elongated faces to squares. If the face is smaller than the value of “Limit”,
it is not longer subdivided.

 Subdivide (But)
 Selected faces are divided into quarters; all edges are split in half. HotKey: WKEY.

 Fract Subd (But)
 Fractal Subdivide. Like “Subdivide”, but now the new vertices are set with a
random vector up or down. A requestor asks you to specify the amount. Use this to
generate landscapes or mountains.

 Noise (But)
 Here Textures can be used to move the selected vertices up a specific amount. The
local vertex coordinate is used as the texture coordinate. Every Texture type works
with this option. For example, the Stucci produces a landscape effect. You can also
use Image textures to express them in relief.

 Smooth (But)
 Shortens all edges with both vertices selected. This flattens sharp angles. HotKey:
WKEY.

 Xsort (But)
 Sorts the vertices in the X direction. This creates interesting effects with (relative)
Vertex Keys or “Build Effects” for Halos.

 Hash (But)
 This makes the sequence of vertices completely random.

 Rem Doubles (But)
 Remove Doubles. All selected vertices that are closer to one
another than the “Limit” are combined and redundant faces are
removed.

 Centre (But)
 Each ObData has its own local 3-D space. The null point of this
space is placed at the Object center. This option calculates a new,
centred null point in the ObData.

 Centre New (But)
 As above, but now the Object is placed in such a way that the ObData appears to
remain in the same place.

 VI

193 Reference

VI

194Reference

 Centre Cursor (But)
 The new null point of the object is the 3DCursor location.

 Flip Normals (But)
 Toggles the direction of the face normals. HotKey: WKEY.

 SlowerDraw, FasterDraw. (But)
 When leaving EditMode all edges are tested to determine whether they must be
displayed as a wire frame. Edges that share two faces with the same normal are
never displayed. This increases the “recognizability” of the Mesh and considerably
speeds up drawing. With “SlowerDraw” and “FasterDraw”, you can specify that
additional or fewer edges must be drawn when you are not in EditMode.

 Double Sided (TogBut)
 Only for display in the 3Dwindow; this can be used to
control whether double-sided faces are drawn. Turn this
option OFF if the Object has a negative “size” value (for
example an X-flip).

 Hide (But)
 All selected vertices are temporarily hidden. HotKey: HKEY.

 Reveal (But)

 This undoes the “Hide” option. HotKey: ALT+H.

 Select Swap (But)
 Toggles the selection status of all vertices.

 NSize (NumBut)
 The length of the face normals, if they have been drawn.

 Draw Normals (NumBut)
 Indicates that the face normals must be drawn in EditMode.

 Draw Faces (NumBut)
 Indicates that the face must be drawn (as Wire) in EditMode. Now it also indicates
whether faces are selected.

 AllEdges (NumBut)
 After leaving EditMode, all edges are drawn normally, without optimization.

 VI

193 Reference

VI

194Reference

24.3.2. EditButtons, Armatures

 Rest Pos (But)
 Disables all animation and puts the armature into its initial (resting) position.

 Draw Axes (But)
 Draw bone axes

 (But)
 Draw bone names

 Buttons to name, organize and build hierarchies of bones. See also Section 22.3.

24.3.3. EditButtons, Camera

 Lens (NumBut)
 This number is derived from the lens values of a photo
camera: “120” is telelens, “50” is normal, “28” is wide angle.

 ClipSta, ClipEnd (NumBut)
 Everything that is visible from the Camera’s point of view
between these values is rendered. Try to keep these values
close to one another, so that the Z-buffer functions optimally.

 DrawSize (NumBut)
 The size in which the Camera is drawn in the 3DWindow.

 Ortho (TogBut)
 A Camera can also render orthogonally. The distance from the Camera then has no
effect on the size of the rendered objects.

 ShowLimits (TogBut)
 A line that indicates the values of “ClipSta” and “ClipEnd” is drawn in the
3DWindow near the Camera.

 VI

195 Reference

VI

196Reference

 ShowMist (TogBut)
 A line that indicates the area of the “mist” (see WorldButtons Section 24.5) is drawn
near the Camera in the 3DWindow.

24.4. EditMode

 When working in 3-D space, you can basically perform two types of operations:
operations that affect the whole object and operations that affect only the geometry
of the object itself but not its global properties such as the location or rotation.

 In Blender you switch between these two modes with the TAB-key. A selected
object outside EditMode is drawn in purple in the 3DWindows (in wireframe mode).
To indicate the EditMode the Object’s vertices are drawn. Selected vertices are
yellow, non-selected are purple.

 Vertices can be selected like objects with the RMB, holding SHIFT allows you to
select more than one vertex. With some vertices selected you can use GKEY, RKEY
or SKEY for manipulating the vertices as you would for whole objects.

 Add a cube to the default scene. Use the 3DCursor to place it away from the default
plane or use GKEY to move it after leaving EditMode.

 Switch the 3DWindow to a side view (PAD3), select
the cube if it is deselected and press TAB to enter the
EditMode again. Now press BKEY for the BorderSelect
and draw a rectangle with the LMB around the top four
vertices of the cube (you can only see two vertices,
because the other two are hidden behind the first
two!).

 The top vertices change to yellow to indicate that they
are selected. You can rotate the view to make sure you
really have selected four vertices.

 VI

195 Reference

VI

196Reference

 Now press SKEY and move the mouse up and
down. You will see how the four vertices are scaled.
Depending on your movement you can make a
pyramid or a chopped-off pyramid. You can now also
try to grab and rotate some vertices of other objects to
get a feeling for the EditMode.

 Using WKEY you can call up the “Specials”-menu in
EditMode. With that menu you can quickly access the
functions often needed for polygon-modeling. You can
find the same functionality in the EditButtons F9.

24.5. WorldButtons

 The WorldButtons define global options for the scene. Only the options appropriate
for the Blenders game engine are explained here.

Figure 24-5. The WorldButtons

 HoR, G, B (NumSli)
 Here you define the color of the world, rendered where no other object is rendered.

 Grav (NumSli)
 Defines the gravity of the world. This influences the force you need to move an
object up for example and how fast it will accelerate while falling.

 VI

197 Reference

VI

198Reference

 Mist (TogBut)
 Activates the rendering of Mist. This blends objects at a certain distance into the
horizon color.

 Qua, Lin, Sqr (RowBut)
 Determines the progression of the mist. Quadratic, linear or inverse quadratic
(square root), respectively. “Sqr” gives a thick “soupy” mist, as if the scene is
viewed under water.

 Sta (NumBut)
 The start distance of the mist, measured from the Camera.

 Di (NumBut)
 The depth of the mist, with the distance measured from “Sta”.

24.6. SoundWindow
Figure 24-6. The SoundWindow

 The SoundWindow is used to load and visualize sounds. You can grab and zoom the
window and its content like every other window in Blender.

 The green bar indicates the position of the FrameSlider. This can be used to
synchronize a sound with an Ipo animation. In the lower part of the window you also
have an indicator of the sound length in seconds.

 In the SoundWindow Header see the usual window buttons, the user buttons and
some information about the sound.

 VI

197 Reference

VI

198Reference

Chapter 25. Real-time Materials
 Materials for Blenders game engine are applied with vertex-paint or UV-Textures.

 With VertexPaint you can paint on Meshes, giving them solid colors or patterns
of color. VertexPaint is also a very valuable tool to make the suggestion of light on
faces and even more important to vary textures. Without using the CPU intense real-
time lighting you can create the impression of a colored lamp shining on objects,
darken corners or even paint shadows.

 Textures have a big impact on the look and feel of your game or interactive
environment. With textures, you are able to create a very detailed look even with a
low poly model. With alpha channel textures, you are also able to create things like
windows or fences without actually modeling them.

25.1. Vertex Paint

 To start VertexPaint press VKEY or select the VertexPaint icon in the 3DWindow
Header. The selected object will now be drawn solid. You can therefore now draw on
the vertices of the object while holding LMB, the size of the brush is visualized by a
circle while drawing. RMB will sample the color under the mouse pointer.

Figure 25-1. Vertex Paint related Buttons in the Paint/FaceButtons

 Enter the Paint/FaceButtons to see the sampled color. Here you can also find
more options to control VertexPaint:

 R, G, B (NumSli)
 The active color used for painting.

 Opacity (NumSli)
 The extent to which the vertex color changes while you are painting.

 Size (NumSli)
 The size of the brush, which is drawn as a circle during painting.

 Mix (RowBut)
 The manner in which the new color replaces the old when painting: the colors are
mixed.

 VI

199 Reference

VI

200Reference

 Add (RowBut)
 The colors are added.

 Sub (RowBut)
 The paint color is subtracted from the vertex color.

 Mul (RowBut)
 The paint color is multiplied by the vertex color.

 Filter (RowBut)
 The colors of the vertices of the painted face are mixed together, with the opacity
factor.

 Area (TogBut)
 In the back buffer, Blender creates an image of the painted Mesh, assigning each
face a color number. This allows the software to quickly see what faces are being
painted. Then, the software calculates how much of the face the brush covers, for
the degree to which paint is being applied. You can set this calculation with the
option “Area”.

 Soft (TogBut)
 This specifies that the extent to which the vertices lie within the brush also
determines the brush’s effect.

 Normals (TogBut)
 The vertex normal (helps) determine the extent of painting. This causes an effect as
tough you were painting with light.

 Set (But)
 The “Mul” and “Gamma” factors are applied to the vertex colors of the Mesh.

 Mul (NumBut)
 The number by which the vertex colors are multiplied when “Set” is pressed.

 Gamma (NumBut)
 The number by which the clarity (Gamma value) of the vertex colors are changed
when “Set” is pressed.

25.2. TexturePaint

 To start TexturePaint select the TexturePaint icon in the 3DWindow Header.

Info: TexturePaint needs a textured object to work. See Section 25.3. You also need to
unpack a packed texture first (see Section 25.3.5).

 VI

199 Reference

VI

200Reference

 You can now paint on the texture of the object while holding the LMB. RMB will
sample the color located under the mouse pointer.

 Enter the Paint/FaceButtons to see the sampled color. Here you can also find
more options to control TexturePaint:

 R, G, B (NumSli)
 The active color used for painting.

 Opacity (NumSli)
 The extent to which the color covers the underlying texture.

 Size (NumSli)
 The size of the brush.

25.3. The UV Editor

 The UV editor is fully integrated into Blender and allows you to map textures onto
the faces of your models. Each face can have individual texture coordinates and an
individual image assigned. This can be combined with vertex colors to darken or
lighten the texture or to tint it.

 To start UV editing, enter FaceSelect mode with the FKEY or the FaceSelect icon in
the 3DWindow Header. The mesh is now drawn Z-Buffered. In textured mode (ALT-Z)
untextured faces are drawn in purple to indicate the lack of a texture. Selected faces
are drawn with a dotted outline.

 To select faces use the right mouse button, with the BKEY you can use BorderSelect
and the AKEY selects/deselects all faces. While in FaceSelect mode you can enter
EditMode (TAB) and select vertices. After leaving EditMode the faces defined by the
selected vertices are selected in FaceSelect mode. The active face is the last selected
face: this is the reference face for copy options.

 RKEY allows you to rotate the UV coordinates or VertexColors.

25.3.1. Mapping UV Textures

 When in FaceSelectMode (FKEY) you can do a calculate UV
textures for selected faces by pressing UKEY. A menu will
give you the following choices:

Cube

 Cubic mapping, a requester asks for a scaling
 property

 VI

201 Reference

VI

202Reference

Cylinder

 Cylindrical mapping calculated from the center
 of the selected faces

Sphere

 Spherical mapping calculated from the center of the selected faces

Bounds to...

 The UV coordinates are calculated using the projection of the 3DWindow
 and then scaled to a bound box of the desired size

Standard...

 Each face gets the default set of square UV coordinates

From Window

 UV coordinates are calculated from the active 3DWindow

25.3.2. The ImageWindow

 To assign images to faces you need to open an ImageWindow with SHIFT-F10.

Figure 25-2. The Image Window

 The first Icon keeps UV polygons square while editing this is a big help while
texturing. Just drag one or two vertices around and the others follow to keep the
polygon square. The second one keeps the vertices inside the area of the image.

 VI

201 Reference

VI

202Reference

 With the UserBrowse (MenuButton) you can browse, assign and delete
loaded images on the selected faces.

 “Load” loads a new image and assigns it to the selected faces. “Replace” replaces
(scene global) an image on all faces assigned to the old image. The small buttons
to the right of the “Load” and “Replace” buttons open a FileWindow without the
thumbnail images.

 The grid icon enables the use of more (rectangular) images in one map. This
is used for texturing from textures containing more than one image in a grid and
for animated textures. The following two number buttons define how many parts
the texture has in X and Y direction. Use SHIFT-LMB to select the desired part of the
image in GridMode.

 The “Anim” button enables a simple texture animation. This works in conjunction
with the grid settings, in a way that the parts of the texture are displayed in a row in
game mode. With the number buttons to the right of the “Anim” button you define
the start and end part to be played. “Speed” controlls the playback speed in frames
per second.

 With the lock icon activated, any changes on the UV polygons in the ImageWindow
are shown in real-time in the 3DWindows (in textured mode).

 Vertices in the ImageWindow are selected and edited (rotate, grab) like vertices in
EditMode in the 3DWindows. Drag the view with the middle mouse, zoom with PAD+
and PAD-.

25.3.3. The Paint/FaceButtons

 When in FaceSelect mode, you can access the Paint/FaceButtons with the Icon
in the ButtonsWindow Header. In the Paint/FaceButtons you’ll find all functions to
set the attributes for faces and access the VertexPaint options.

Figure 25-3. The Paint/FaceButtons

 The following modes always work on faces and display the setting of the active

 VI

203 Reference

VI

204Reference

face. Two colored lines in the 3DWindow and the ImageWindow indicate the active
face. The green line indicates the U coordinate, the red line the V coordinate. To
copy the mode from the active to the selected faces use the copy buttons (“Copy
DrawMode”, “Copy UV+tex” and “Copy VertCol”) in the Paint/FaceButtons. In
FaceSelect mode the special menu has some entries to quickly set and clear modes
on all selected faces, see Figure 25-4.

Figure 25-4. The special menu for the FaceSelectMode

Face modes
Tex

 This enables the use of textures. To use objects without textures, disable
 “Tex” and paint the faces with VertexPaint.

Tiles

 This indicates and sets the use of the tile mode for the texture, see Section
 25.3.2.

Light

 Enables real-time lighting on faces. Lamps only affect faces of objects that
 are in the same layer as the lamp. Lamps can also be placed on more than one
 layer, which makes it possible to create complex real-time lighting situations.
 See also Section 26.7.

Invisible

 Makes faces invisible. These faces are still calculated for collisions, so this
 gives you an option to build invisible barriers, etc.

Collision

 The faces with this option are evaluated by the game engine. If that is not
 needed, switch off this option to save resources.

Shared

 With this option vertex colors are blended across faces if they share vertices.

Twoside

 Faces with this attribute are rendered twosided in the game engine.

ObColor

 Faces can have color that can be animated by using the ColR, ColG, ColB and

 VI

203 Reference

VI

204Reference

 ColA Ipos. Choosing this option replaces the vertex colors.

Halo

 Faces with this attribute are rendered with the negative X-axis always pointing
 towards the active view or camera.

Billboard

 Faces with this attribute are pointing in the direction of the active view with
 the negative X-axis. It is different to “Halo” in that the faces are only rotated
 around the Z-axis.

Shadow

 Faces with this attribute are projected onto the ground along the Z-axis of the
 object. This way they can be used to suggest the shadow of the object.

Text

 Faces with this attribute are used for displaying bitmap-text in the game
 engine, see Section 25.4.

Opaque

 Normal opaque rendered faces. The color of the texture is rendered as color.

Add

 Faces are rendered transparent. The color of the face is added to what has
 already been drawn. Black areas in the texture are transparent, white are fully
 bright. Use this option to achieve light beam effects, glows or halos around
 lights. For real transparency use the next option “Alpha”.

Alpha

 The transparency depends on the alpha channel of the texture.

25.3.4. Avaible file formats

 Blender uses OpenGL (http://www.opengl.org/) to draw its interface and the game
engine. This way we can provide the such great cross-platform compatibility. In
terms of using textures, we have to pay attention to several things before we‘re able
to run the game on every Blender platform.

 • The height and width of textures should be to the power of 64 pixels (e.g.
 64x64, 64x128, 128x64 etc.) or Blender has to scale them (in memory not on
 disk!) to provide OpenGL compatibility

• The use of textures with a resolution above 256 x 256 pixels is not
 recommended if you plan on publishing your game, because not all graphic
 cards support higher resolutions.

 VI

205 Reference

VI

206Reference

Blender can use the following file formats as (real-time) textures:

Targa

 The Targa or TGA (*.tga extension) file format is a lossless compressed
 format, which can include an alpha channel.

Iris

 Iris (*.rgb) is the native IRIX image format. It is a lossless compressed file
 format, which can include an alpha channel.

Jpeg

 A lossy compressing (it uses a compression which leaves out parts of the
 image which the human eye can hardly see) file format (*.jpg, *.jpeg) is
 designed for photos with very small file sizes. Because of its small
 footprint it is a very good format for distribution over the net. It has no
 support for alpha channels and because of the quality loss due to
 compression it is not a recommended format to work with during the design
 phase of a game.

 25.3.5. Handling of resources

 For publishing and easier handling of Blender‘s files, you can include all resources
into the scene. Normally textures, samples and fonts are not included in a file while
saving. This keeps them on your disk and makes it possible to change them and
share them between scenes. But if you want to distribute a file it is possible to pack
these resources into the Blendfile, so you only need to distribute one file, preventing
missing resources.

Figure 25-5. The ToolsMenu

 The functions for packing and unpacking are
summarized in the ToolsMenu. You can see if a file is
packed if there is a little “parcel” icon to the right of
the ToolsMenu. After you packed a file, all new added
resources are automatically packed (AutoPack).

 When working with textures, sounds or fonts you will notice a pack-icon near the
File- or Datablock-Browse. This icon allows you to unpack the file independently.

The Tools Menu entries
Pack Data

 This packs all resources into the Blendfile. The next save will write the
 packed file to disk.

Unpack Data to current dir

 This unpacks all resources to the current directory. For textures a directory
 “textures” is created, for sounds a “samples” directory and fonts are
 unpacked to “fonts”.

 VI

205 Reference

VI

206Reference

Advanced Unpack

 This option calls the Advanced Unpack Menu.

Figure 25-6. Advanced Unpack Menu

Advanced Unpack Menu entries
Use files in current directory

 This unpacks only files which are not present in the current directory. It
 creates files when necessary.

Write files to current directory

 This unpacks the files to the current directory. It overwrites existing files!

Use files in original location

 This uses files from their original location (path on disk). It creates files
 when necessary.

Write files to original location

 This writes the files to their original location (path on disk). It overwrites
 existing files!

Disable AutoPack, keep all packed files

 This disables AutoPack, so new inserted resources are not packed into
 the Blendfile.

Ask for each file

 This asks the user for the unpack options of each file.

25.4. Bitmap text in the game engine

 Blender has the ability to draw text in the game engine using special bitmap fonts
textures. These bitmap fonts can be created from a TrueType or a Postscript outline
font. For an explanation of how to create a bitmap font look for the Tutorial How to
create your own bitmap fonts (http://www.blender.nl/showitem.php?id=44) on the
Blender site.

 To get bitmap text or numbers displayed on a single face you need a special bitmap
with the font rendered onto it. Then create a property named “Text” for your object
and map the first character (“@”) of the text-bitmap on it. Check the “Text” face
attribute for the face Paint/FaceButtons. The property can be any type, so a Boolean
Property will also be rendered as “True” or “False”.

 VI

207 Reference

VI

208Reference

Chapter 26. Blenders game engine
 Technically speaking the Blender game engine is a framework with a collection
of modules for interactive purposes like physics, graphics, logic, sound and
networking. Functionally the game engine processes virtual reality, consisting of
content (the world, it’s buildings) and behaviors (like physics, animation and logic).
Elements in this world - also called GameObjects - behave autonomously by having
a set of tools called LogicBricks, and Properties. For comparison, the Properties act
as the memory, the Sensors are the senses, the Controllers are the brain and the
Actuators allow for actions in the outside world (i.e. muscles).

 At the moment, the Controllers can be scripted using python, or simple expressions.
The idea is that the creation of logical behavior can be edited in a more visual way in
the future, so the set of controllers expands with AI state machines, etc. Controllers
could be split in control centers, like an audio visual center, motion center, etc.

26.1. Options for the game engine
Figure 26-1. The GameMenu

 Options from the GameMenu
Start Game (PKEY)

 Start the game engine, stop the engine with ESC, Blender will return to
 the Creator.

Enable All Frames

 With this option checked the game engine runs without dropping frames.
 This is useful while recording to a Targa-Sequence or when you need to
 make sure that all collisions are calculated without loss on slower computers.

Show framerate and profile

 With this menu option checked, the game engine will show some information
 on how fast the game runs and how the work is distributed.

Show debug properties

 With this option checked, all Properties marked for debug output () are
 printed on screen while the game engine is running.

 VI

207 Reference

VI

208Reference

Autostart

 Enable Autostart for the scene.

26.2. Options in the InfoWindow

 In the InfoWindow, you can make your personal defaults for certain aspects of
Blender. They will be saved with the Blender default scene when you press CTRL-U.

Figure 26-2. InfoWindow options

Blender game engine options in the InfoWindow

Vertex Arrays

 Disable the use of vertexarrays. Vertexarrays normally speed up the
 calculation on complex scenes. If your OpenGL system does not support
 vertexarrays you can switch them off using this option.

No sound

 Disable audio output.

No Mipmaps

 Don`t use texture Mipmap, this can speedup the game but will result in
 not so nice rendered textures.

Python:

 Here you can enter an additional path where the Python interpreter of
 Blender should search for modules.

26.3. Command line options for the game engine

When Blender is called with the option „-h“ on a command line (shell window or
DOS window) it prints out the command line parameters.

 VI

209 Reference

VI

210Reference

Figure 26-3. Blender command line options0

[cw@work cw]$ blender -h

Blender V 2.24

Usage: blender [options ...] [file]

Render options:

 -b <file> Render <file> in background

 -S <name> Set scene <name>

 -f <frame> Render frame <frame> and save it

 -s <frame> Set start to frame <frame> (use with -a)

 -e <frame> Set end to frame (use with -a)<frame>

 -a Render animation

Animation options:

 -a <file(s)> Playback <file(s)>

 -m Read from disk (Don’t buffer)

Window options:

 -w Force opening with borders

 -p <sx> <sy> <w> <h> Open with lower left corner at <sx>,

<sy>

 and width and height <w>, <h>

Game Engine specific options:

 -g fixedtime Run on 50 hertz without dropping frames

 -g vertexarrays Use Vertex Arrays for rendering (usually

faster)

 -g noaudio No audio in Game Engine

 -g nomipmap No Texture Mipmapping

 -g linearmipmap Linear Texture Mipmapping instead of

Nearest (default)

Misc options:

 -d Turn debugging on

 -noaudio Disable audio on systems that support audio

 -h Print this help text

 -y Disable OnLoad scene scripts, use -Y to find out

why its -y

[cw@work cw]$

 VI

209 Reference

VI

210Reference

 Command line options for the Blender game engine
-g fixedtime

 With this option the game engine runs without dropping frames. This is
 useful while recording to a Targa-Sequence or when you need to make
 sure that all collisions are calculated without loss on slower computers.

-g vertexarrays

 Disable the use of vertexarrays. Vertexarrays normally speed up the
 calculation on complex scenes. If your OpenGL system doesn’t support
 vertex arrays you can switch them off using this option.

 -g noaudio

 Disable audio.

 -g nomipmap

 Don`t use texture Mipmap, this can speedup the game but will result in
 not so nicely rendered textures.

 -g linearmipmap

 Linear Texture mipmapping instead of nearest (default).

26.4. The RealtimeButtons

 The RealtimeButtons are meant for making interactive 3-D worlds in Blender.
Blender acts as a complete development tool for interactive worlds including a game
engine to play the worlds. All this is done without compiling the game or interactive
world. Just press PKEY and it runs in real-time. The main view for working with
the Blender game engine are the RealtimeButtons (). Here you define your
LogicBricks, which add the behavior to your objects.

Figure 26-4. RealtimeButtons left part

Info: The word “games” is here used for all kinds of interactive 3D-content; Blender is not
limited to making and play games

 VI

211 Reference

VI

212Reference

 The RealtimeButtons can logically be separated in two parts. The left part contains
global settings for GameObjects.

 This includes settings for general physics, like the damping or mass. Here you also
define if an object should be calculated with the build-in physics, as an actor or
should be handled as an object forming the level (like props on a stage).

Settings for GameObjects
Actor

 Activating “Actor” for an object causes the game engine to evaluate this
 object. The Actor button will produce more buttons described below.
 Objects without the “Actor” button activated can form the level (like props
 on a stage) and are seen by other actors as well.

Ghost

 Ghost objects that don’t restitute to collisions, but still trigger a collision
 sensor.

Dynamic

 With this option activated, the object follows the laws of physics. This
 option spawns new buttons that allow you to define the object’s attributes
 in more detail.

Rigid Body

 The “Rigid Body” button enables the use of advanced physics by the game
 engine. This makes it possible to make spheres roll automatically when they
 make contact with other objects and the friction between the materials is
 non-zero. The rigid body dynamics are a range of future changes to the
 game engine. Use the “Form:” factor to control the rolling speed.

Do Fh

 This button activates the Fh mechanism (see Section 26.6). With this option
 you can create a floating or swimming behavior for actors.

Rot Fh

 With this option set the object is rotated in such a way that the Z-axis points
 away from the ground when using the Fh mechanism.

Mass

 The mass of a dynamic actor has an effect on how the actor reacts when
 forces are applied to it. You need a bigger force to move a heavier object.
 Note that heavier objects don’t fall faster! It is the air drag that causes a
 difference in the falling speed in our environment (without air, e.g. on the
 moon, a feather and a hammer fall at the same speed). Use the “Damp”
 value to simulate air drag.

Size

 The size of the bounding sphere. The bounding sphere determines the area
 with which collisions can occur. In future versions this will not be limited to
 spheres anymore.

 VI

211 Reference

VI

212Reference

Form

 A form factor which gives you control over the behaiviour of “Rigid Body”
 objects.

Damp

 General (movement) damping for the object. Use this value for simulating
 the damping an object receives from air or water. In a space scene you might
 want to use very low or zero damping, air needs a higher damping, use a
 very high damping to simulate water.

RotDamp

 Same as “Damp” but for rotations of the object.

Anisotropic

 When an actor moves on a surface you can define a friction between the
 objects. Friction will slow down objects, because it is a force that works
 against any existing forces in the direction of the surface. It is controlled in
 the dynamic material settings (MaterialButtons F5, see Section 26.6). This
 friction works equally in all directions of movement.

 With the “Anisotropic” option activated you can control the friction
 independently for the three axes. This is very helpful for racing games,
 where for example the car receives little friction in the driving direction
 (because of the rolling tires) and high friction sliding to the side .

 Below the object settings you define the Properties of a GameObject. These
Properties can carry values, which describe attributes of the object like variables in a
programming language. Use “ADD property” to add properties (see Section 26.5).

 The right part of the RealtimeButtons is the command center for adding logic
to your objects and worlds. The logic consists of the Sensors, Controllers and
Actuators.

Figure 26-5. Example of some LogicBricks

 Sensors are like the senses of a life form; they react on key presses, collisions,
contact with materials (touch), timer events or values of properties.

 The Controllers are collecting events from the sensors and are able to calculate
them to a result. These are similar to the mind or brain of a life form. Simple
Controllers just do an AND on the inputs. An example is to test if a key is pressed
AND a certain time has passed. There are also OR Controllers and you can also

 VI

213 Reference

VI

214Reference

use Python scripting and expressions in the Expression Controller to create more
complex behavior.

 The Actuator actually performs actions on objects. A Motion Actuator for example
is like a muscle. This muscle can apply forces to objects to move or rotate them.
There are also Actuators for playing predefined animations (via Ipos), which can be
compared to a reflex.

 The logic is connected (wired) with the mouse, Sensors to Controllers and
Controllers to Actuators. After wiring you are immediately able to play the game! If
you discover something in the game you don’t like, just stop the game engine, edit
your 3-D world and restart. This way you can drastically cut down your development
time!

26.5. Properties

 Properties carry information bound to the object, similarly to a local variable in
programming languages. No other object can normally access these properties, but
it is possible to copy Properties with the Property Copy Actuator (see Section 27.3.7)
or send them to other objects using messages (see Section 27.3.11).

Figure 26-6. Defining properties

 The big “ADD property” button adds a new Property. By default a Property of the
float type is added. Delete a Property with its “Del” button. The MenuButton defines
the type of the Property. Click and hold it with the left mouse button and choose
from the pop up menu. The “Name:” text field can be edited by clicking it with the
left mouse button. SHIFT-BACKSPACE clears the name.

Note: Property names are case sensitive. So “Erwin” is not equal to “erwin”.

 The next field is different for each of the Property types. For the Boolean type there
are two radio-buttons; choose between “True” and “False”. The string-type accepts
a string; enter a string by clicking in the field with the left mouse. The other types
use a NumberButton to define the default value. Use SHIFT-LMB for editing it with
the keyboard, click and drag to change the value with the mouse.

 VI

213 Reference

VI

214Reference

Property types

Boolean (Bool)

 This Property type stores a binary value, meaning it can be “TRUE” or
 “FALSE”. Be sure to write it all in capitals when using these values in
 Property Sensors or Expressions.

Integer (Int)

 Stores a number like 1,2,3,4,... in the range from -2147483647 to 2147483647.

Float

 Stores a floating point number.

String

 Stores a text string. You can also use Expressions or the Property Sensor to
 compare strings.

Timer

 This Property type is updated with the actual game time in seconds, starting
 from zero. On newly created objects the timer starts when the object is
 “born”.

 26.6. Settings in the MaterialButtons

 Some physical attributes can be defined with the material settings of Blender.
The MaterialButtons can be accessed via the icon in the header of the
ButtonsWindow or by pressing F5. Create a new material or choose an existing one
with the MenuButton in the header.

 In the MaterialButtons you need then to activate the “DYN” button to see the
dynamic settings (See Figure 26-7).

Figure 26-7. Material settings for dynamic objects

Restitute

 This parameter controls the elasticity of collisions. A value of 1.0 will convert
 all the kinetic energy of the object to the opposite force. This object then has
 an ideal elasticity. This means that if the other object (i.e. the ground) also has
 a Restitute of 1.0 the object will keep bouncing forever.

Friction

 This value controls the friction of the objects material. If the friction is low,
 your object will slide like on ice, with a high friction you get the effect of

 VI

215 Reference

VI

216Reference

 sticking in glue.

Fh Force

 In conjunction with the “Do Fh” and/or “Rot Fh” (see Section 26.4) you make
 an object float above a surface.

 “Fh Force” controls the force that keeps the object above the floor.

Fh Dist

 “Fh Dist” controls the size of the Fh area. When the object enters this area
 the Fh mechanism starts to work.

Fh Damp

 Controls the damping inside the Fh area. Values above 0.0 will damp the
 object movement inside the Fh area.

Fh Norm

 With this button activated the object also gets a force in the direction of
 the face normal on slopes. This will cause an object to slide down a slope
 (see the example: FhDemo.blend (blends/FhDemo.blend)).

26.6.1. Specularity settings for the game engine

Figure 26-8. Specularity settings

Specularity settings in the MaterialButtons
Spec

 This slider controls the intensity of the specularity.

Hard

 This slider controls the size of the specularity (hardness).

Spec color

 Activating this button, switches the RGB (or HSV) sliders to define the
specularity color.

 VI

215 Reference

VI

216Reference

26.7. Lamps in the game engine
Figure 26-9. LampButtons, settings for Blenders game engine

 Lamps are created with the Toolbox (SPACE->ADD Lamp). For a selected lamp
you can switch to the LampButtons (F4) to change the properties of that lamp.
These properties are the color, the energy, etc. Due to the fact that the game engine
is fully integrated in Blender, there are some buttons which are only useful for linear
animation.

 Common settings for all lamp types are the energy, and the color (adjustable with
the RGB sliders).

 To allow a face to receive real-time lighting in Blenders game engine, the face has
to be set to “Light” in the Paint/FaceButtons (See Section 25.3). With the layer
settings for lamps and objects (EditButtons, F9) you can control the lighting very
precisely. Lamps only affect faces on the same layer(s) as the lamp. Per Layer you
can use eight lamps (OpenGL limitation) for real-time lighting.

Lamp types for the game engine
Lamp

 Lamp is a point light source.

Spot

 This lamp is restricted to a conical space. In the 3DWindow the form of the
 spotlight is shown with broken lines. Use the SpotSi slider to set the angle
 of the beam.

Sun

 The “Sun” lamp type is a directional light. The distance has no effect on the
 intensity. Change the direction of the light (shown as a broken line) by
 rotating the lamp.

Hemi

 “Hemi” lamp type is currently not supported in the game engine.

 The “Lamp” and “Spot” lights can be sensitive to distance. Use the “Dist:”, “Quad1:
” and “Quad2:” settings for this. The mathematics behind this are explained in the
“Official Blender 2.0 Guide” (see Section 29.5).

 VI

217 Reference

VI

218Reference

26.8. The Blender laws of physics

 All objects in Blender with the “Dynamic” option set (see Settings for GameObjects)
are evaluated using the physics laws as defined by the game engine and the user.

 The key property for a dynamic object is its mass. Gravity, forces, and impulses
(collision bounce) only work on objects with a mass. Also, only dynamic objects can
experience drag, or velocity damping (a crude way to mimic air/water resistance).

Note: Note that for dynamic objects using dLoc and dRot may not have the desired
result. Since the velocity of a dynamic object is controlled by the forces and impulses,
any explicit change of position or orientation of an object may not correspond with the
velocity. For dynamic objects it’s better to use the linV and angV for explicitly defining the
motion.

 As soon we have defined a mass for our dynamic object, it will be affected by
gravity, causing it to fall until it hits another object with its bounding sphere. The
size of the bounding-sphere can be changed with the “Size:” parameter in the
RealtimeButtons. The gravity has a value of 9.81 by default: you can change this in
the WorldButtons with the “Grav” slider. A gravity of zero is very useful for space
games or simulations.

 Note: Use the “Damp:” and “RotDamp:” settings to suggest the drag of air or other
environments. Don’t use it to simulate friction. Friction can be simulated by using the
dynamic material settings.

 Dynamic objects can bounce for two reasons. Either you have Do Fh enabled and
have too little damping, or you are using a Restitute value in the dynamic material
properties that is too high.

Note: If you haven’t defined a material, the default restitution is 1.0, which is the
maximum value and will cause two objects without materials to bounce forever.

 In the first case, increasing the damping can decrease the amount of bounce. In
the latter case define a material for at least one of the colliding objects, and set its
Restitute value to a smaller value. The Restitute value determines the elasticity of
the material. A value of zero denotes that the relative velocity between the colliding
objects will be fully absorbed. A value of one denotes that the total momentum will
be preserved after the collision.

 Damping decreases the velocity in % per second. Damping is useful to achieve
a maximum speed. The larger the speed the greater the absolute decrease of
speed due to drag. The maximum speed is attained when the acceleration due to
forces equals the deceleration due to drag. Damping is also useful for damping out
unwanted oscillations due to springs.

 Friction is a force tangent to the contact surface. The friction force has a maximum
that is linear to the normal, i.e., the force that presses the objects against each

 VI

217 Reference

VI

218Reference

other, (the weight of the object). The Friction value denotes the Coulomb friction
coefficient, i.e. the ratio of the maximum friction force and the normal force. A
larger Friction value will allow for a larger maximum friction. For a sliding object the
friction force will always be the maximum friction force. For a stationary object the
friction force will cancel out any tangent force that is less than the maximum friction.
If the tangent force is larger than the maximum friction then the object will start
sliding.

 For some objects you need to have different friction in different directions. For
instance a skateboard will experience relatively little friction when moving it
forward and backward, but a lot of friction when moving it side to side. This is called
anisotropic friction. Selecting the “Anisotropic” button in the RealTimeButtons
(F8) will enable anisotropic friction. After selecting this button, three sliders will
appear in which the relative coefficient for each of the local axes can be set. A
relative coefficient of zero denotes that along the corresponding axis no friction is
experienced. A relative coefficient of one denotes that the full friction applies along
the corresponding axis.

26.9. Expressions

 Expressions can be used in the Expression Controller, the Property Sensor and the
Property Actuator.

Table 26-1. Valid expressions

Expression type Example

Integer numbers 15

Float number 12.23224

Booleans TRUE, FALSE

Strings “I am a string!”

Properties propname

Sensornames sensorname (as named in the LogicBrick)

Table 26-2. Arithmetic expressions

Expression Example

EXPR1 + EXPR2 Addition, 12+3, propname+21

EXPR1 - EXPR2 Subtraction, 12-3, propname-21

EXPR1 * EXPR2 Multiplication, 12*3, propname*21

EXPR1 / EXPR2 Division, 12/3, propname/21

EXPR1 > EXPR2 EXPR1 greater EXPR2

EXPR1 >= EXPR2 EXPR1 greater or equal EXPR2

EXPR1 < EXPR2 EXPR1 less EXPR2

 VI

219 Reference

VI

220Reference

Table 26-3. Boolean operations

Operation Example

NOT EXPR Not EXPR

EXPR1 OR EXPR2 logical OR

EXPR1 AND EXPR2 logical AND

EXPR1 == EXPR2 EXPR1 equals EXPR2

 Conditional statement: IF(Test, ValueTrue, ValueFalse)

Examples:

Table 26-4. Expression examples

Expression Result Explanation

12+12 24 Addition

TRUE or FALSE String comparison between a
Property and a string

TRUE A string compare is done

26.10. SoundButtons

 The SoundButtons are used for loading and managing sounds for the Blender
game engine. Look at Section 24.6 for a method to visualize the waveform.

Figure 26-10. The SoundButtons

 In the SoundButtons Header you can see the name of the SoundObject (here “SO:
MiniGunFire.wav”). This name is set to the name of the sound sample by default.

 VI

219 Reference

VI

220Reference

With the MenuButton you can browse existing SoundObjects and create new
SoundObjects. The blue color of the sound name indicates that more than one user
uses the sound, the number button indicates the number of users.

Listener settings
 The “Listener settings” on the right side of the SoundButtons define global settings
for the listener. The listener is the current camera. The “Volume:” slider sets the
global volume of all sounds. The “Veloc:” slider controls the overall strength of the
Doppler effect.

Sound settings
 In the SoundSettings section you can then assign or load samples for the
SoundObject. So the SoundObject name doesn’t have to be the name of the
sample. For example you can use a SoundObject “SO:explosion” and then load
“explosion_nuke.wav” later. You load samples using the “Load Sample” button
in the SoundButtons. The sample name and the location on disk are shown in the
text field to the right of the “Load Sample” button. Using the MenuButton to the
left of the location, you can browse samples already loaded and assign one to the
SoundObject.

 Above the sample location Blender gives you some basic information about the
loaded sample, like the sample frequency, 8 or 16bit and if the sample is Stereo or
Mono.

 The NumberButton indicates how many SoundObjects share the sample. When the
pack/unpack button (parcel) is pressed, the sample is packed into the *.blend file,
which is especially important when distributing files.

 The “Play” button plays the sound, you can stop a playing sound with ESC.

 The “Copy Sound” Button copies the SoundObject with all parameters.

Parameter settings
 The “Vol:” slider sets the volume of the sample.

 With the Pitch: value you can change the frequency of the sound. Currently there’s
support for values between half the pitch (-12 semitones) and double the pitch (+12
semitones). Or in Hertz: if your sample has a frequency of 1000 Hz, the bottom value
is 500 and the top 2000 Hz.

 The “Loop” button sets the looping for the sample on or off. Depending on the play-
mode in the Sound Actuator this setting can be overridden.

 The “3D Sound” Button activates the calculation of 3-D sound for this SoundObject.
This means the volume of the sound depends on the distance and position (stereo
effect) between the sound source and the listener. The listener is the active camera.

 The “Scale:” slider sets the sound attenuation. In a 3-D world you want to scale
the relationship between gain and distance. For example, if a sound passes by the
camera you want to set the scaling factor that determines how much the sound will
gain if it comes towards you and how much it will diminish if it goes away from you.

 VI

221 Reference

VI

222Reference

The scaling factor can be set between 0.0. All positions get multiplied by zero, no
matter where the source is, it will always sound as if it is playing in front of you (no
3-D Sound), 1.0 (a neutral state, all positions get multiplied by 1) and 5.0 which over
accentuates the gain/distance relationship.

26.11. Performance and design issues

 Computers get faster every month, nowadays nearly every new computer has a
hardware accelerated graphics card. But still there are some performance issues to
think about. This is not only a good design and programming style but also essential
for the platform compatibility Blender provides. So to make a well-designed game
for various platforms, keep these rules in mind:

 1. Don’t use properties in combination with AND/OR/Expr. controller as
 scripting language. Use the Python Controller.

 2. Use as few inter-object LogicBrick connections as possible.

 3. Use ALT-D (instanced mesh for new object) when replicating meshes,
 this is better than SHIFT-D (copies the mesh).

 4. Alpha mapped polygons are expensive, so use with care.

 5. Switching off the collision flag for polygons is good for performance.
 The use of “Ghost” is also cheaper then a regular physics object.

 6. Keep the polygon count as low as possible. Its quite easy to add polygons
 to models, but very hard to remove them without screwing up the model.
 The detail should be made with textures.

 7. Keep your texture-resolution as low as possible. You can work with hi-res
 versions and then later reduce them to publish the game (see Section 25.3).

 8. Polygons set to “Light” are expensive. A hardware acceleration with a
 “Transform and Lighting” chip will help here.

 9. Instead of real-time lighting use VertexPaint to lighten, darken or tint faces
 to suggest lighting situations.

 VI

221 Reference

VI

222Reference

Chapter 27. Game LogicBricks
 The game logic in Blenders game engine is assembled in the RealtimeButtons. Here
you wire the different LogicBricks together. The following is a brief description of all
the LogicBricks currently available.

27.1. Sensors

 Sensors act like real senses; they can detect collisions, feel (Touch), smell (Near),
view (Ray, Radar).

27.1.1. Always Sensor

 The most basic Sensor is the Always Sensor. It is also a good example for the
common buttons every sensor has.

Figure 27-1. Common elements for Sensors

 The button labeled “X” deletes the Sensor from the game logic. This happens
without a confirmation, so be careful. The MenuButton to the right of the delete
button (here labeled “Always”) allows you to choose the type of Sensor. Click and
hold it with the left mouse button to get the pop up menu. Next is a TextButton,
which holds the name of the Sensor. Blender assigns the name automatically on
creation. Click the name with the left mouse button to change the name with the
keyboard.

Note: Name your LogicBricks and Blender objects to keep track of your scenes. A
graphical logic scheme can become very complex.

 With the small arrow button you can hide the contents of the LogicBrick, so it only
shows the top bar. This is very handy in complex scenes.

 The next row of buttons is used to determine how and at which frequency a Sensor
is “firing”. This topic is a bit complex, so we will give examples in more than one
part of this documentation.

General things on pulses
 Pulses coming from Sensors trigger both Controllers and Actuators. A pulse can
have two values, TRUE or FALSE.

 VI

223 Reference

VI

224Reference

 Each Controller is always evaluated when it receives a pulse, it doesn’t matter
whether the pulse is TRUE or FALSE. The input “gate” of a Controller remembers the
last pulse value. This is necessary for Controllers being linked by multiple Sensors,
then it can still do a logical AND or OR operation on all inputs. When a Controller is
triggered, and after the evaluation of all inputs, it can either decide to execute the
internal script or to send a pulse to the Actuators.

 An Actuator reacts to a pulse in a different way, with a TRUE pulse it switches itself
ON (makes itself active), with a FALSE pulse it turns itself OFF.

Figure 27-2. Pulse Mode Buttons

 The first button activates the positive pulse mode. Every time the Sensor fires a
pulse it is a positive pulse. This can be used, for example to start a movement with
an Motion Actuator. The button next to it activates the negative pulse mode, which
can be used to stop a movement.

Note: If none of the pulse mode buttons are activated the Always Sensor fires exactly one
time. This is very useful for initialising stuff at the start of a game.

 The button labeled “f:” (set to 41 here), determines the delay between two pulses
fired by the Sensor. The value of “f:” is given as frames.

 The “Inv” button inverts the pulse, so a positive (TRUE) pulse will become negative
(FALSE) and vice versa.

27.1.2. Keyboard Sensor

 The Keyboard Sensor is one of the most often used Sensors because it provides the
interface between Blender and the user.

 The pulse mode buttons are common for every Sensor so they have the same
functionality as described for the Always Sensor.

 By activating the “All keys” Button, the Sensor will react to every key. In the “Hold”
fields you can put in modifier keys, which need to be held while pressing the main
key.

 The Keyboardsensor can be used for simple text input. To do so, fill in the Property
which should hold the typed text (you can use Backspace to delete chars) into the
“Target:” field. The input will be active as long the Property in “LogToggle:” is
“TRUE”.

 VI

223 Reference

VI

224Reference

Python methods:
 Import the Gamekeys module (see Section 28.3.3) to have symbolic names for the
keys.

setKey(int key);

 Sets the Key on which the Sensor reacts

int key getKey();

 Gets the key on which the Sensor reacts

setHold1(int key);

 Sets the first modifier key

int key getHold1();

 Gets the first modifier key

setHold2(int key);

 Sets the second modifier key

int key getHold2();

 Gets the second modifier key

 list keys getPressedKeys();

 Gets the keys (including modifier)

list keys getCurrentlyPressedKeys();

 Gets the keys (including modifier) currently held

27.1.3. Mouse Sensor

 Currently, the Sensor is able to watch for mouse clicks, mouse movement or a
mouse over. To get the position of the mouse cursor as well you need to use a
Python-script.

 Use the MenuButton to choose between the Mouse Sensor types:

Mouse Sensor types
Left/Middle/Right Button

 VI

225 Reference

VI

226Reference

 The sensor gives out a pulse when the correlate mouse button is pressed.

Python methods:

int xpos getXPosition();

 Gets the mouse’s X-position

int ypos getYPosition();

 Gets the mouse’s Y-position

Movement

 The sensor gives out a pulse when the mouse is moved.

Python methods:

int xpos getXPosition();

 Gets the mouse x-position

int ypos getYPosition();

 Gets the mouse y-position

Mouse over

 The sensor gives a pulse when the mouse cursor is over the object.

27.1.4. Touch Sensor

 The Touch Sensor fires a pulse when the object it is assigned to, touches a material.
If you enter a material name into the „MA:“ text field it only reacts to this material
otherwise it reacts to all touch.

 VI

225 Reference

VI

226Reference

Python methods:
 The Touchsensor inherits from the Collision Sensor, so it provides the same
Methods, hence the Methode names.

setProperty((char* matname));

 Sets the Material the Touch Sensor should react to

char* matname getProperty();

 Gets the Material the Touch Sensor reacts to

gameObject obj getHitObject();

 Returns the touched Object

list objs getHitObjectList();

 Returns a list of touched objects

27.1.5. Collison Sensor

 The Collision Sensor is a general Sensor used to detect contact between objects.
Besides reacting to materials it is also capable of detecting Properties of an object.
Therefore you can switch the input field from Material to Property by clicking on the
„M/P“ button.

Python methods:

setProperty((char* name));

 Sets the Material or Property the Collision Sensor should react to

char* name getProperty();

 Gets the Material or Property the Collision Sensor reacts to

gameObject obj getHitObject();

 Returns the colliding Object

list objs getHitObjectList();

 Returns a list of objects that have collided

 VI

227 Reference

VI

228Reference

27.1.6. Near Sensor

 The near sensor reacts to actors near the object with the sensor.

Note: The near sensor only senses objects of the type “Actor” (a dynamic object is also an
actor).

 If the “Property:” field is empty, the near sensor reacts to all actors in its range. If
filled with a property name, the sensor only reacts to actors carrying a property with
that name.

 The spherical range of the near sensor you set with the “Dist” NumberButton. The
“Reset” value defines at what distance the near sensor is reset again.

Python methods:

setProperty((char* propname));

 Sets the Property the Near Sensor should react to

char* propname getProperty();

 Gets the Property the Near Sensor reacts to

list gameObjects getHitObjectList();

 Returns a list of game objects detected by the Near Sensor.

gameObject obj getHitObject();

 Returns the object which triggered the Sensor

27.1.7. Radar Sensor

 The Radar Sensor acts like a real radar. It looks for an object along the axis indicated
with the axis buttons „X, Y, Z“. If a property name is entered into the „Prop:“ field, it
only reacts to objects with this property.

 VI

227 Reference

VI

228Reference

 In the “Ang:” field you can enter an opening angle for the radar. This equals the
angle of view for a camera. The “Dist:” setting determines how far the Radar Sensor
can see.

 Objects can’t block the line of sight for the Radar Sensor. This is different for the Ray
Sensor (see Section 27.1.10). You can combine them for making a radar that is not
able to look through walls.

Python methods:

setProperty((char* name));

 Sets the Property that the Radar Sensor should react on

char* name getProperty();

 Gets the name of the Property

gameObject obj getHitObject();

 Returns the detected object that triggered the sensor

 list objs getHitObjectList();

 Returns a list of detected objects

27.1.8. Property Sensor

 The Property Sensor logically checks a Property attached to the same object.

 The “Equal” type Property Sensor checks for equality of the property given in

 VI

229 Reference

VI

230Reference

the “Prop:” field and the value in “Value:”. If the condition is true, it fires pulses
according to the pulse mode settings.

 The “Not Equal” Property Sensor checks for inequality and then fires its pulses.

 The “Interval” type property sensor fires its pulse if the value of property is inside
the interval defined by “Min:” and “Max:”. This sensor type is especially helpful for
checking float values, which you can’t depend on to reach a value exactly. This is
most common with the “Timer” Property.

 The “Changed” Property Sensor gives out pulses every time a Property is changed.
This can, for example, happen through a Property Actuator, a Python script or an
Expression.

Python methods:

setProperty((char* propname));

 Sets the Property to check

char* propname getProperty();

 Gets the Property to check

setType((int type));

 Sets the type of the Property Sensor.

 1. Equal

 2. Not Equal

 3. Interval

 4. Changed

char* propname getProperty();

 Gets the type of the Property Sensor

 VI

229 Reference

VI

230Reference

setValue((char* expression));

 Sets the value to check (as expression)

char* expression getValue();

 Gets the value to check (as expression)

27.1.9. Random Sensor

 The Random Sensor fires a pulse randomly according to the pulse settings (50/50
pick).

Note: With a seed of zero the Random Sensor works like an Always Sensor, which means
it fires a pulse every time.

Python methods:

setSeed((int seed));

 Set the seed for the random generation

 int seed getSeed();

 Gets the seed for the Random Sensor

int seed getLastDraw();

 Gets the last draw from the Random Sensor

27.1.10. Ray Sensor

 The Ray Sensor casts a ray for the distance set into the NumberButton „Range“. If
the ray hits an object with the right Property or the right Material the Sensor fires its
Pulse.

Note: Other objects block the ray, so that it can’t see through walls.

 VI

231 Reference

VI

232Reference

 Without a material or property name filled in, the Ray Sensor reacts to all objects.

Python methods:

list [x,y,z] getHitPosition();

 Returns the position where the ray hits the object.

list [x,y,z] getHitNormal();

 Returns the normal vector how the ray hits the object.

list [x,y,z] getRayDirection();

 Returns the vector of the Ray direction

gameObject obj getHitObject();

 Returns the hit Object

27.1.11. Message Sensor

 The Message Sensor fires its pulse when a Message arrives for the object carrying
the Sensor. The “Subject:” field can be used to filter messages matching the subject.

Python methods:

list bodies getBodies();

 Returns a list containing the message bodies arrived since last call

int messages getFrameMessageCount();

 Returns the number of messages received since the last frame

setSubjectFilterText(string subject);

 Sets the subject for the Message Sensor

 VI

231 Reference

VI

232Reference

27.2. Controllers

 Controllers act as the brain for your game logic. This reaches from very simple
decisions like connecting two inputs, simple expressions, to complex Python scripts
which can carry artificial intelligence.

27.2.1. AND Controller

 The AND Controller combines one, two or more inputs from Sensors. That means
that all inputs must be active to pass the AND Controller.

27.2.2. OR Controller

 The OR Controller combines one, two or more inputs from Sensors. OR means
that either one or more inputs can be active to let the OR Controller pass the pulse
through.

27.2.3. Expression Controller

 With the Expression Controller you can create slightly complex game logic with a
single line of „code“. You can access the output of sensors attached to the controller
and access the properties of the object.

Note: The expression mechanism prints out errors to the console or in the DOS window,
so have a look there if anything fails.

 More on using Expressions can be found in Section 26.9.

 VI

233 Reference

VI

234Reference

27.2.4. Python Controller

 The Python controller is the most powerful controller in game engine. You can
attach a Python script to it, which allows you to control your GameObjects, ranging
from simple movement up to complex game-play and artificial intelligence.

 Enter the name of the script you want to attach to the Python Controller into the
“Script:” field. The script needs to exist in the scene or Blender will ignore the name
you type.

Note: Remember that Blender treats names as case sensitive! So the script “player” is not
the same as “Player”.

 Python for the game engine is covered in Chapter Section 28.2

Python methods:

Actuator* getActuator(char* name ,);

 Returns the actuator with “name”.

list getActuators();

 Returns a python list of all connected Actuators.

Sensor* getSensor(char* name ,);

 Returns the Sensor with “name”.

list getSensors();

 Returns a python list of all connected Sensors.

27.3. Actuators

 Actuators are the executing LogicBricks. They can be compared with muscles or
glands in a life form.

 VI

233 Reference

VI

234Reference

27.3.1. Action Actuator

Action play modes
Play

 Plays the Action from „Sta“ to „End“ at every positive pulse the Actuator
gets. Other pulses while playing are discarded.

Flipper

 Plays the Action from „Sta“ to „End“ on activation. When the activation ends
it plays backwards from the current position. When a new activation reaches the
Actuator the Action will be played from the current position onwards.

Loop Stop

 Plays the Action in a loop as long as the pulse is positive. It stops at the
current position when the pulse turns negative.

Loop End

 This plays the Action repeatedly as long as there is a positive pulse. When the
pulse stops it continues to play the Action to the end and then stops.

Property

 Plays the Action for exactly the frame indicated in the property entered in the
field „Prop:“.

27.3.2. Motion Actuator

 The Motion Actuator is maybe the most important Actuator. It moves, rotates or
applies a velocity to objects.

 The simplest case of using a Motion Actuator is to move the object. This is done
with the “dLoc” values in the third row. Every time the actuator is triggered by an
impulse it moves the object by the amount given in the “dLoc” row. The three values
here stand for X-, Y- and Z-axis. So when you enter a 1.0 in the first field the object

 VI

235 Reference

VI

236Reference

is moved one unit per time unit of the game (the clock in the game engine ticks in
frames, roughly 1/25 of a second, for exact timings use the Timer Property).

 The buttons labeled “L” behind each row in the motion actuator, determine if the
motion applied should be treated as global or local. If the button is pushed (dark
green) the motion is applied based on the local axis of the object. If the button is not
pressed the motion is applied based on the global (world) axis.

Force

 Values in this row act as forces that apply to the object. This only works for
 dynamic objects.

Torque

 Values in this row act as rotational forces (Torque) that apply to the object.
 This works only for dynamic objects. Positive values rotate counter-
 clock-wise.

dLoc

 Offset the object as indicated in the value fields

dRot

 Rotate the object for the given angle (36 is a full rotation). Positive values
 rotate clock-wise.

linV

 Sets (overrides current velocity) the velocity of the object to the given
 values. When “add” is activated the velocity is added to the current velocity.

angV

 Sets the angular velocity to the given values. Positive values rotate counter-
 clock-wise.

 The Motion Actuator starts to move objects on a pulse (TRUE) and stops on a FALSE
pulse. To get a movement over a certain distance, you need to send a FALSE pulse to
the motion actuator after each positive pulse.

Python methods:

setForce(float x , float y , float z , bool local);

 Sets the “Force” parameters for the Motion Actuator.

list [x,y,z,local] getForce();

 Gets the “Force” parameter from the Motion Actuator, local indicates if the local
button is set (1).

setTorque(list [x,y,z]);

 VI

235 Reference

VI

236Reference

 Sets the «Torque» parameter for the Motion Actuator.

list [x,y,z] getTorque();

 Gets the «Torque» parameter for the Motion Actuator.

setdLoc(list [x,y,z]);

 Sets the dLoc parameters from the Motion Actuator.

list [x,y,z] getdLoc();

 Gets the dLoc parameters from the Motion Actuator.

setdRot(list [x,y,z]);

 Sets the dRot parameters for the Motion Actuator.

list [x,y,z] getdLoc();

 Gets the dRot parameters from the Motion Actuator.

setLinearVelocity(list [x,y,z]);

 Sets the linV parameters for the Motion Actuator.

list [x,y,z] getLinearVelocity();

 Gets the linV parameters from the Motion Actuator.

setAngularVelocity(list [x,y,z]);

 Sets the angV parameters for the Motion Actuator.

list [x,y,z] getAngularVelocity();

 Gets the angV parameters from the Motion Actuator.

27.3.3. Constraint Actuator

 With the Constraint Actuator you can limit an object‘s freedom to a certain degree.

 With the MenuButton you specify which channel’s freedom should be constrained.
With the NumberButtons “Min” and “Max” you define the minimum and maximum
values for the constraint selected. To constrain an object to more than one channel
simply use more than one Constraint actuator.

 VI

237 Reference

VI

238Reference

Python methods:

setDamp(int damp);

 Sets the Damp parameter

int damp getDamp();

 Gets the Damp parameter

setMin(int min);

 Sets the Min parameter

int min getMin();

 Gets the Min parameter

setMax(int max);

 Sets the Max parameter

int max getMax();

 Gets the Max parameter

 setMin(int min);

 Sets the Min parameter

int min getMin();

 Gets the Min parameter

 setLimit(int limit);

 Sets the limit for the constraint. None = 1, LocX = 2, LocY = 3, LocZ = 4

int limit getLimit();

 Gets the constraint

27.3.4. Ipo Actuator

 VI

237 Reference

VI

238Reference

 The Ipo Actuator can play the Ipo-curves for the object that owns the Actuator. If the
object has a child with an Ipo (in a parenting chain) and you activate “Child” in the
Actuator, the Ipo for the child is also played.

 The “Force” Button will convert the “Loc” Ipo curves into forces for dynamic
objects. When pressed, the “L” Button appears which cares for applying the forces
locally to the objects coordinate system.

Ipo play modes

Play

 Plays the Ipo from „Sta“ to „End“ at every positive pulse the Actuator gets.
 Other pulses received while playing are discarded.

Ping Pong

 Plays the Ipo from „Sta“ to „End“ on the first positive pulse, then backwards
 from „End“ to „Sta“ when the second positive pulse is received.

Flipper

 Plays the Ipo for as long as the pulse is positive. When the pulse changes to
 negative the Ipo is played from the current frame to „Sta“.

Loop Stop

 Plays the Ipo in a loop for as long as the pulse is positive. It stops at the
 current position when the pulse turns negative.

Loop End

 This plays the Ipo repeatedly for as long as there is a positive pulse. When the
 pulse stops it continiues to play the Ipo to the end and then stops.

Property

 Plays the Ipo for exactly the frame indicated by the property named in the
 field „Prop:“.

Currently the following Ipos are supported by the game engine:

Mesh Objects

 Loc, Rot, Size and Col

Lamps

 Loc, Rot, RGB, Energy

Cameras

 Loc, Rot, Lens, ClipSta, ClipEnd

 VI

239 Reference

VI

240Reference

Python methods:

SetType(int type);

 Sets the type, 1 indicates the first play type from the menu button etc.

int type GetType();

 Sets the type, 1 indicates the first play type from the menu button

SetStart(int frame);

 Sets the Sta: frame

SetEnd(int frame);

 Sets the End: frame

int frameGetStart();

 Gets the Sta: frame

int frameGetEnd();

 Gets the End: frame

27.3.5. Camera Actuator

 The Camera Actuator tries to mimic a real cameraman. It keeps the actor in the field
of view and tries to stay at a certain distance from the object. The motion is soft and
there is some delay in the reaction on the motion of the object.

 Enter the object that should be followed by the camera (you can also use the
Camera Actuator for non-camera objects) into the “OB:” field. The field “Height:”
determines the height above the object the camera stays at. “Min:” and “Max:” are
the bounds of distance from the object to which the camera is allowed to move. The
“X” and “Y” buttons specify which axis of the object the camera tries to stay behind.

 VI

239 Reference

VI

240Reference

27.3.6. Sound Actuator

 The Sound Actuator plays a SoundObject loaded using the SoundButtons
(see Section 26.10). Use the MenuButton to browse and choose between the
SoundObjects in the scene.

Sound play modes (MenuBut)

Play Stop

 Plays the sound for as long as there is a positive pulse.

Play End

 Plays the sound to the end, when a positive pulse is given.

Loop Stop

 Plays and repeats the sound, when a positive pulse is given.

Loop End

 Plays the sound repeatedly, when a positive pulse is given. When the pulse
 stops the sound is played to its end.

Custom set. (TogBut)

 Checking the „Custom set.“ button will copy the SoundObject (sharing the
 sample data) and allows you to quickly change the volume and pitch of the
 sound with the appearing NumberButtons.

Python methods:

float gain getGain();

 Get the gain (volume) setting.

setGain(float gain);

 Set the gain (volume) setting.

float pitch getPitch();

 Get the pitch setting.

setPitch(float pitch);

 Set the pitch setting.

 VI

241 Reference

VI

242Reference

27.3.7. Property Actuator

Property modes

Assign

 Assigns a value or Expression (given in the „Value“ field) to a Property. For
 example with an Expression like „Proppy + 1“ the „Assign“ works like an
 „Add“. To assign strings you need to add quotes to the string („...“).

Add

 Adds the value or result of an expression to a property. To subtract simply
 give a negative number in the „Value:“ field.

Copy

 This copies a Property (here „Prop: SProp“) from the Object with the name
 given in „OB: Sphere“ into the Property „Prop: Proppy“. This is an easy
 and safe way to pass information between objects. You cannot pass
 information between scenes with this Actuator!

Python methods:

SetProperty(string name);

string name GetProperty();

SetValue(string value);

string value GetValue();

 More on using Expressions can be found in Section 26.9.

27.3.8. Edit Object Actuator

 This actuator performs actions on Objects itself, like adding new objects, deleting
objects, etc.

 VI

241 Reference

VI

242Reference

Edit Object Actuator types

Add Object

 The Add Object actuator adds an object to the scene. The new object is oriented
along the X-axis of the creating object.

Info: Keep the object you‘d like to add on a seperate and hidden layer. You will see an
error message on the console or debug output when not following this rule.

 Enter the name of the Object to add in the „OB:“ field. The „Time:“ field determines
how long (in frames) the object should exist. The value „0“ denotes it will exist
forever. Be careful not to slow down the game engine by generating too many
objects! If the time an object should exist is not predictable, you can also use other
events (collisions, properties, etc.) to trigger an „End Object“ for the added object
using LogicBricks.

 With the “linV” buttons it is possible to assign an initial velocity to the added object.
This velocity is given in X, Y and Z components. The “L” button stands for local.
When it is pressed the velocity is interpreted as local to the added object.

Python methods:

setObject(string name);

 Sets the Object (name) to be added

string name getObject();

 Gets the Object name

setTime(int time);

 Time in frames the added Object should exist. Zero means unlimited

int time getTime();

 Gets the time the added object should exist

setLinearVelocity(list [vx,vy,vz]);

 Sets the linear velocity [Blenderunits/sec] components for added Objects.

 VI

243 Reference

VI

244Reference

list [vx,vy,vz] getLinearVelocity();

 Gets the linear velocity [Blenderunits/sec] components from the Actuator

gameObject* getLastCreatedObject();

 Gets a pointer to the last created object. This way you can manipulate dynamically
added objects.

End Object

 The “End Object” type simply ends the life of the object with the actuator when
it gets a pulse. This is very useful for ending a bullet’s life after a collision or
something similar.

Replace Mesh

 The “Replace Mesh” type, replaces the mesh of the object by a new one, given
in the “ME:” field. Remember that the mesh name is not implicitly equal to the
objectname.

Python methods:

setMesh(string name);

 Sets the Mesh for the ReplaceMesh Actuator to “name”

string name getMesh();

 Gets the Mesh-name from the ReplaceMesh actuator

Track to

 The “Track to” type, rotates the object in such a way that the Y-axis points to the
target specified in the “OB:” field. Normally this happens only in the X/Y plane of
the object (indicated by the “3D” button not beeing pressed). With “3D” pressed the

 VI

243 Reference

VI

244Reference

tracking is done in 3D. The “Time:” parameter sets how fast the tracking is done.
Zero means immedeately, values above zero produce a delay (are slower) in tracking.

Python methods:

setObject(string name);

string name getObject();

setTime(int time);

 Sets the time needed to track

int time getTime();

 Gets the time needed to track

setUse3D(bool 3d);

 Set if “3D” should be used leading to full 3-D tracking

27.3.9. Scene Actuator

 The Scene Actuator is meant for switching Scenes and Cameras in the game engine
or adding overlay or background scenes.

 Choose the desired action with the MenuButton and enter an existing camera or
scene name into the text field. If the name does not exist, the button will be blanked!

Reset

 Simply restarts and resets the scene. It has the same effect as stopping the game
with ESC and restarting with PKEY.

Set Scene

 Switch to the scene indicated into the text field. During the switch all properties are
reset!

 VI

245 Reference

VI

246Reference

Python methods for all types of Scene Actuators:

setScene(char* scene);

 Sets the Scene to switch to

char* scene getScene();

 Gets the Scene name from the Actuator

Set Camera

 Switch to the Camera indicated in the text field.

Python methods:

setCamera(char* camera);

 Sets the Camera to switch to

char* camera getCamera();

 Gets the Camera name from the Actuator

Add OverlayScene

 Adds an overlay scene which is rendered on top of all other (existing) scenes.

Add BackgroundScene

 Adds a background scene which will be rendered behind all other scenes.

Remove Scene

 VI

245 Reference

VI

246Reference

 Removes a scene.

Suspend Scene

 Suspends a scene until “Resume Scene” is called.

Resume Scene

 Resumes a suspended Scene.

27.3.10. Random Actuator

 An often-needed function for games is a random value to get more variation in
movements or enemy behavior.

 The Seed parameter is the value fed into the random generator as a start value for
the random number generation. Because computer generated random numbers are
only “pseudo” random (they will repeat after a (long) while) you can get the same
random numbers again if you choose the same Seed.

 Enter the name of the property you want to be filled with the random number into
the “Property:” field.

Random Actuators types

Boolean Constant

 This is not a random function at all, use this type to test your game logic with a
TRUE or FALSE value.

 VI

247 Reference

VI

248Reference

Boolean Uniform

 This is the classic random 50-50 pick. It results in TRUE or FALSE with an equal
chance. This is like an (ideal) flip of a coin.

Boolean Bernoulli

 This random function results in a boolean value of TRUE or FALSE, but instead
of having the same chance for both values you can control the chance of having a
TRUE pick with the „Chance“ parameter. A chance of 0.5 will be the same as „Bool
Uniform“. A chance of 0.1 will result in 1 out of 10 cases in a TRUE (on average).

Integer Constant

 For testing your logic with a value given in the „Value:“ field

Integer Uniform

 This random type randomly produces an integer value between (and including)
„Min:“ and „Max:“. The classical use for it is to simulate a dice pick with „Min: 1“
and „Max: 6“.

Integer Poisson

 The random numbers are distributed in such a way that an average of „Mean:“ is
reached with an infinite number of picks.

Float Constant

 For debugging your game logic with a given value.

 VI

247 Reference

VI

248Reference

Float Uniform

 This returns a random floating point value between „Min:“ and „Max:“.

Float Normal

 Returns a weighted random number around „Mean:“ and with a standard deviation
of „SD:“.

Float Negative Exponential

 Returns a random number which is well suited to describe natural processes like
radioactive decay or lifetimes of bacteria. The „Half-life time:“ sets the average value
of this distribution.

Python methods:

setSeed(int seed);

 Sets the random seed (the init value of the random generation)

int seed getSeed();

 Gets the random seed (the init value of the random generation) from the Actuator

float para1 getPara1();

 Gets the first parameter for the selected random distribution

float para2 getPara2();

 Gets the second parameter for the selected random distribution

setProperty(string propname);

 Sets the Property to which the random value should go

string propname getProperty();

 Gets the Property name from the Actuator

 VI

249 Reference

VI

250Reference

setDistribution(int dist);

 Set the distribution, “dist = 1” means the fist choice from the type MenuButton

int dist getDistribution();

 Gets the random distribution method from the Actuator

27.3.11. Message Actuator

 This LogicBrick sends a message out, which can be received and processed by the
Message Sensor.

 The “To:” field indicates that the message should only be sent to objects with the
Property indicated by “To:”. The subject of the message is indicated in the “Subject:
” field. With these two possibilities you can control the messaging very effectively.

 The body (content) of the message can either be a text (“Body:”) string or the
content of a Property when “T/P” is activated (“Propname:”). See Section 27.1.11 on
how to get the body of a message.

Python methods:

setToPropName(char* propname);

 Sets the property name the message should be send to.

setSubject(char* subject);

 Sets the subject of the message.

setBody(char* body);

 Sets the body of the message.

setBodyType(int bodytype);

 Sets whether the body should be text or a Property name.

 VI

249 Reference

VI

250Reference

Chapter 28. Python
 Python (http://www.python.org/) is an interpreted, interactive, object-oriented
programming language.

 Python combines remarkable power with very clear syntax. It has modules, classes,
exceptions, very high level dynamic data types, and dynamic typing. Python is
also usable as an extension language for applications that need a programmable
interface.

 Beside this use as an extension language, the Python implementation is portable to
(at least) all platforms that Blender runs on.

 Python is copyrighted but freely usable and distributable, even for commercial use.

28.1. The TextWindow

 The TextWindow is a simple but useful text editor, fully integrated into Blender.
It’s main purpose of it is to write Python scripts, but it is also very useful for writing
comments in the Blendfile or to explain the purpose of the scene to other users.

Figure 28-1. The TextWindow

 The TextWindow can be displayed with SHIFT-F11 or by adjusting the IconMenu
in the WindowHeader. As usual there is an IconBut to make the TextWindow
fullscreen, the next MenuButton can be used to switch between text files, open new
ones or add new text buffers. The “X”-shaped Button deletes a textbuffer after a
confirmation.

 With the MenuButton on the right side you can change the font used to display the
text.

 By holding LMB and then dragging the mouse you can mark ranges of text for the
usual cut, copy & paste functions. The key commands are:

 VI

251 Reference

VI

252Reference

Keycommands for the TextWindow
ALT-C

 Copies the marked text into a buffer

ALT-X

 Cuts out the marked text into a buffer

ALT-V

 Pastes the text from buffer to the cursor in the TextWindow

 ALT-O

 Loads a text, a FileWindow appears

 CTRL-R

 Reloads the current text, very useful for editing with an external editor

 SHIFT-ALT-F

 Pops up the Filemenu for the TextWindow

 ALT-F

 Find function

ALT-J

 Pops up a NumButton where you can specify a line number that the
 cursor will jump to

ALT-U

 Unlimited Undo for the TextWindow

ALT-R

 Redo function, recovers the last Undo

ALT-A

 Marks the whole text

28.2. Python for games

 With Python integrated into the game engine you can influence LogicBricks, change
their parameters and react to events triggered by the LogicBricks.

 Besides that you can influence the GameObject that carries the Python Controller
directly. This means moving it, applying forces or getting information from this
object.

 Info: In addition to the Python in the game engine, Blender includes Python for modeling
and animation tasks.

 VI

251 Reference

VI

252Reference

28.2.1. Basic gamePython

 The first step for using gamePython is to add at least a Sensor and a Python
Controller to an object. Then add a new text file in the TextWindow. Fill in the name
of that text file into the „Script:“ field of the Python Controller. You should now have
a game logic setup like in Figure 28-2.

Figure 28-2. LogicBricks for a first gamePython script.

 Now enter the following script into the TextWindow (you don’t need to type the
lines starting with “#”, these are comments).

Figure 28-3. First Script

 1 # first gamePython script

 2 # gets the position of the owning object

 3 # and prints it on the console

 4

 5 import GameLogic

 6

 7 controller = GameLogic.getCurrentController()

 8 owner = controller.getOwner()

 9

 10 print owner.getPosition()

 The “print” command and errors from the Python interpreter will appear on the
console from which you started Blender from, or in the DOS window, when running
Blender under Windows. So it is helpful to size the Blender window in such a way
that you can see the console window while programming Python.

 This basic script only prints the position of the object that owns the Python
Controller. Move your object and then restart the game engine with the PKEY to see
the results changing.

 Now we explain the function of the script line by line. Line five is maybe the most
important line here. We import the “GameLogic” module which is the basis for all
game Python in Blender.

 In line seven we get the Controller, which executes the script and assigns it to the
variable “controller”.

 In line eight we use the controller we got in line seven to get the owner, the

 VI

253 Reference

VI

254Reference

GameObject carrying the LogicBrick. You can see we use the method “getOwner()”
to get the owner of our controller.

 We now have the owner and we can use its methods to do things with it. Here in line
10 we use the “getPosition()” method to print the position of the gameObject as a
matrix of the X, Y and Z values.

 You may now wonder what other methods the PythonObjects have. Of course this
is part of this documentation, but Python is “self” documenting, so we have other
ways to get that information.

 Add the following line to the end of the script from Figure 28-3:

 1 print dir(owner)

 Start the game engine again, stop it and look at the console window. You will see
the following output:

[0.0, 0.0, 0.0]

[‘applyImpulse’, ‘disableRigidBody’,’enableRigidBody’, ‘getLinearVelocity’, ‘getMass’,

‘getOrientation’, ‘getPosition’, ‘getReactionForce’,’getVelocity’, ‘restoreDynamics’,
‘setOrientation’, ‘setPosition’, ‘setVisible’, ‘suspendDynamics’]

 The first line shows the position of the object, the next lines show the methods, that
the “owner” provides. For example you see a ‘getMass’ method, which will return
the mass of a dynamic object. With the knowledge of the “dir()” function you can ask
Python objects for information, without consulting external documentation.

28.3. Game Python Documentation per module

28.3.1. GameLogic Module

SCA _ PythonController getCurrentController();

 Returns the Controller object that carries the script.

void addActiveActuator(actuator , bool active);

 This method makes the Actuator “actuator” active (“active=TRUE”) or inactive
(“active=FALSE”).

float getRandomFloat();

 This function returns a random float in the range of 0.0...1.0. The seed is taken from
the system time, so you get a different sequence of random numbers at every game
start.

setGravity([gravityX,gravityY,gravityZ]);

 Sets the world gravity.

 VI

253 Reference

VI

254Reference

28.3.2. Rasterizer Module

int getWindowWidth();

 This function returns the width of the Blender window the game is running in.

int getWindowHeight();

 This function returns the height of the Blender window the game is running in.

void makeScreenshot(char* filename);

 This function writes a screenshot of the game as a TGA file to disk.

enableVisibility(bool usevisibility);

 This sets all objects to invisible when “usevisibility” is TRUE. The game can then set
the visibility back to “on” for the necessary objects only.

showMouse(bool show);

 Shows or hides the mouse cursor while the game engine runs, depending on the
show parameter. The default behaviour is to hide the mouse, but moving over the
window border will reveal it again, so set the mouse cursor visibility explicitly with
this function.

setBackgroundColor(list [float R,float G,float B]);

 Sets the Backgroundcolor. Same as the horizon color in the WorldButtons.

setMistColor(list [float R,float G,float B]);

 Sets the mist (fog) color. In the game engine you can set the mist color
independantly from the backgroundcolor. To have a mist effect, activate “Mist” in
the WorldButtons.

setMistStart(float start);

 Sets the distance where the Mist starts to have effect. See also the WorldButtons.

setMistEnd(float end);

 Sets the distance from MistStart (0% Mist) to 100% mist. See also the
WorldButtons.

28.3.3. GameKeys Module

 This is a module that simply defines all keyboard keynames (AKEY = 65 etc).

 “AKEY”, ..., “ZKEY”, “ZERO_KEY” , ..., “NINEKEY”, “CAPSLOCKKEY”,
“LEFTCTRLKEY”, “LEFTALTKEY”, “RIGHTALTKEY”, “RIGHTCTRLKEY”,

 VI

255 Reference

VI

256Reference

“RIGHTSHIFTKEY”, “LEFTSHIFTKEY”, “ESCKEY”, “TABKEY”, “RETKEY”,
“SPACEKEY”, “LINEFEEDKEY”, “BACKSPACEKEY”, “DELKEY”, “SEMICOLONKEY”,
“PERIODKEY”, “COMMAKEY”, “QUOTEKEY”, “ACCENTGRAVEKEY”,
“MINUSKEY”, “VIRGULEKEY”, “SLASHKEY”, “BACKSLASHKEY”, “EQUALKEY”,
“LEFTBRACKETKEY”, “RIGHTBRACKETKEY”, “LEFTARROWKEY”,
“DOWNARROWKEY”, “RIGHTARROWKEY”, “UPARROWKEY”, “PAD0”, ..., “PAD9”,
“PADPERIOD”, “PADVIRGULEKEY”, “PADASTERKEY”, “PADMINUS”, “PADENTER”,
“PADPLUSKEY”, “F1KEY”, ..., “F12KEY”, “PAUSEKEY”, “INSERTKEY”, “HOMEKEY”,
“PAGEUPKEY”, “PAGEDOWNKEY”, and “ENDKEY”.

28.4. Standard methods for LogicBricks

All LogicBricks inherit the following methods:

gameObject*getOwner();

 This returns the owner of the GameObject the LogicBrick is assigned to.

28.4.1. Standard methods for Sensors

 All sensors inherit the following methods:

int isPositive();

 True if the sensor fires a positive pulse. Very usefull for example to differentiate the
press and release state from a KeyboardSensor.

bool getUsePosPulseMode();

 Returns TRUE if positive pulse mode is active, FALSE if positive pulse mode is not
active.

setUsePosPulseMode(bool flag);

 Set “flag” to TRUE to switch on positive pulse mode, FALSE to switch off positive
pulse mode.

int getPosFrequency();

 Returns the frequency of the updates in positive pulse mode.

setPosFrequency(int freq);

 Sets the frequency of the updates in positive pulse mode. If the frequency is
negative, it is set to 0.

 VI

255 Reference

VI

256Reference

bool getUseNegPulseMode();

 Returns TRUE if negative pulse mode is active, FALSE if negative pulse mode is not
active.

setUseNegPulseMode(bool flag);

 Set “flag” to TRUE to switch on negative pulse mode, FALSE to switch off negative
pulse mode.

int getNegFrequency();

 Returns the frequency of the updates in negative pulse mode.

setNegFrequency(int freq);

 Sets the frequency of the updates in negative pulse mode. If the frequency is
negative, it is set to 0.

bool getInvert();

 Returns whether or not pulses from this sensor are inverted.

setInvert(bool flag);

 Set “flag” to TRUE to invert the responses of this sensor, set to FALSE to keep the
normal response.

28.4.2. Standard methods for Controllers

 Controllers have the following methods:

Actuator* getActuator(char* name ,);

 Returns the actuator with “name”.

list getActuators();

 Returns a python list of all connected Actuators.

Sensor* getSensor(char* name ,);

 Returns the Sensor with “name”.

list getSensors();

 Returns a python list of all connected Sensors.

 VI

257 Reference

VI

258Reference

28.4.3. Standard methods for GameObjects

 The GameObjects you got with getOwner() provide the following methods.

applyImpulse(list [x,y,z] ,);

 Apply impulse to the gameObject (N*s).

disableRigidBody();

 Disables the rigid body dynamics for the gameObject.

enableRigidBody(,);

 Enables the rigid body dynamics for the gameObject.

setVisible(int visible);

 Sets the GameObject to visible (int visible=1) or invisible (int visible=0), this state is
true until the next frame-draw. Use “enableVisibility(bool usevisibility);” from the
Rasterizer Module to make all objects invisible.

setPosition([x,y,z]);

 Sets the position of the gameObject according to the list of the X, Y and Z coordinate.

pylist [x,y,z] getPosition();

 Gets the position of the gameObject as list of the X, Y and Z coordinate.

pylist [x,y,z] getLinearVelocity();

 Returns a list with the X, Y and Z component of the linear velocity. The speed is in
Blender units per second.

pylist [x,y,z] getVelocity();

 Returns a list with the X, Y and Z component of the velocity. The speed is in
Blenderunits/second.

float mass getMass();

 Returns the mass of the GameObject.

pylist [x,y,z] getReactionForce();

 Returns a Python list of three elements.

suspendDynamics();

 Suspends the dynamic calculation in the game engine.

restoreDynamics();

 Suspends the dynamic calculation in the game engine.

 VI

257 Reference

VI

258Reference

Chapter 29. Appendix

29.1. Blender Installation

 We want to ensure that the installation process is as easy as it can be. Usually the
process consists of three easy steps:

 1. Get Blender from CD or by downloading it

 2. Uncompress the archive or use the installer

 3. Start Blender

 The Blender Windows version will work on 32 bit versions of Windows (Windows
9x, Windows ME, Windows NT and Windows 2000). Get the installer archive from
our website, or locate it on the CD.

 Double click on the installer icon. The installer will load and presents you with a
splash screen and some important information about Blender. Read this information
and click “Next” to proceed to the next screen.

 Please read the license agreement carefully and agree by clicking on “Yes”. The
next screen displays some general information on Blender. Press “Next” to skip it.

In the “Choose Setup Folder” screen, enter a valid path where you want to install
Blender. Optionally you can browse to a directory using the “browse”-button next to
the path. The path’s default is C:\Program Files\Blender.

 VI

259 Reference

VI

260Reference

 After pressing “Next” in the “Choose Setup Folder” screen, Blender is installed on
your hard disk.

The installer offers you the option to start Blender after the installation by activating
the checkbox “Start Blender”. To start Blender later, you can use the automatically
created shortcut on your desktop, or use the entry in the start-menu.

29.2. Graphics card compatibility by Daniel Dunbar

Blender requires a 3-D accelerated graphics card that supports OpenGL. We strongly
recommend making sure you are using the latest version of the drivers for your
graphics card before attempting to run Blender. See the Upgrading section below if
you are unsure how to upgrade your graphics drivers.

 Additionally here are some tips to try if you are having trouble running Blender, or if
Blender is running with very low performance.

 • Most consumer graphics cards are optimized for 16-bit color mode
 (High Color). Try changing the color mode you are using in the Display
 Properties .

 • Some cards many not be able to accelerate 3-D at higher resolutions,
 try lowering your display resolution in the Display Properties (Figure 29-1).

 • Some cards may also have problems accelerating 3-D for multiple
 programs at a time - make sure Blender is the only 3-D application running.

 • If Blender runs but displays incorrectly, try lowering the hardware
 acceleration level in the Performance tab of the Advanced Display
 Properties (Figure 29-2).

29.2.1. Upgrading your graphics drivers

 Graphics cards are generally marketed and sold by a different company than
the one that makes the actual chipset that handles the graphics functionality.
For example, a Diamond Viper V550 actually uses an NVidia TNT2 chipset, and a
Hercules Prophet 4000XT uses a PowerVR Kyro chipset.

 VI

259 Reference

VI

260Reference

 Often both the card manufacturer and the chipset maker will offer drivers for your
card, however, we recommend always using the drivers from the chipset maker,
these are often released more frequently and of a higher quality.

Table 29-1. Card manufacturers

Company Commonly Used Chipsets

3Dfx, http://www.3dfx.com 3Dfx

AOpen, http://www.aopen.com NVidia, SiS

ASUS, http://www.asus.com NVidia

ATI, http://www.ati.com ATI

Creative, http://www.creative.com NVidia

Diamond Multimedia, http://
www.diamondmm.com

NVidia, S3

ELSA, http://www.elsa.com NVidia

Gainward, http://www.gainward.com NVidia, S3

Gigabyte, http://www.giga-
byte.com

NVidia

Hercules, http://www.hercules.com NVidia, PowerVR

Leadtek, http://www.leadtek.com 3DLabs, NVidia

Matrox, http://www.matrox.com Matrox

Videologic, http://
www.videologic.com

PowerVR, S3

 If you are not sure which chipset is in your graphics card consult the section on
determining your graphics chipset Section 29.2.2.

 Once you know which chipset your graphics card uses, find the chipset maker
in the table below, and follow the link to that company’s driver page. From there
you should be able to find the drivers for your particular chipset, as well as further
instructions about how to install the driver.

29.2.2. Determining your graphics chipset

 The easiest way of finding out what graphics chipset is used by your card, is to
consult the documentation (or the box) that came with your graphics card, often
the chipset is listed somewhere (for example on the side of the box, or in the
specifications page of the manual, or even in the title, i.e. a „Leadtek WinFast
GeForce 256“).

 If you are unable to find out which chipset your card uses from the documentation,
follow the steps below.

 If you don’t know what graphics card you have, go to the “Display Properties”
dialog (Figure 29-1), select the “Settings” tab, and look for the “Display” field, where

 VI

261 Reference

VI

262Reference

you should see the names of your monitor and graphics card. Often the graphics
card will also display its name/model and a small logo when you turn on the
computer.

 Once you know which graphics card you have, the next step is to determine
which chipset is used by the card. One way of finding this out is to look up
the manufacturer in the card manufacturers table and follow the link to the
manufacturers website, once you are there, find the product page for your card
model; the chipset that the card is based on should be listed somewhere on this
page.

Table 29-2. Chipset manufacturers

Company Chipsets Driver Page

3Dfx Banshee Voodoo http://www.3dfx.com/
downloads.htm

3DLabs Permedia http://www.3dlabs.com/
support/drivers/index.htm

ATI Rage Radeon http://support.ati.com/
products/pc/index.html

Intel i740 i810 i815 http://
developer.intel.com/
design/software/drivers/
platform/

Matrox G200 G400 G450 http://www.matrox.com/mga/
support/drivers/home.cfm

NVidia Vanta Riva 128 Riva
TNT/Geforce

http://www.nvidia.com/
view.asp?PAGE=drivers

PowerVR KYRO KYRO II http://www.powervr.com/
Downloads.asp

Rendition Verite http://www.micron.com/con
tent.jsp?path=Products/ITG

 S3 Graphics Savage http://www.s3graphics.com/
DRVVIEW.HTM

SiS 300 305 315 6326 http://www.sis.com/
support/driver/index.htm

Trident
Microsystems

Blade CyberBlade http://

www.tridentmicro.com/

videcomm/download/

download.htm

 Now that you know which chipset your card uses, you can continue with the
instructions in the upgrading section (Section 29.2.1).

 VI

261 Reference

VI

262Reference

29.2.3. Display dialogs in Windows concerning the
graphics card

Figure 29-1. Display Properties

 The display properties dialog has many useful settings for changing the functioning
of your graphics card. To open the display properties dialog, go to “Start Menu ->
Settings -> Control Panel” and select the display icon, or right-click on your desktop
and select “Properties”.

Figure 29-2. Advanced Display Properties

 VI

263 Reference

VI

264Reference

 The advanced display properties dialog has settings for controlling the function
of your graphics driver, and often has additional settings for tweaking the 3-D
acceleration. To open the advanced display properties dialog, open the Display
Properties as described above, then open the Settings tab, and click on the
Advanced button in the lower right corner.

29.2.4. Graphics Compatibility Test Results

 In the table good (or bad) performance refers to the speed of general 3-D drawing
and is an indication of how well a game will perform. Good (or bad) interactivity
refers to how fast the interface responds on the graphics card, and is an indication of
how well the graphics card works for creating and editing 3-D scenes in Blender.

 All tests are carried out with the latest drivers we could find. If the results on your
system do not match ours, make sure you are using the latest drivers, as described
in the Upgrading section (Section 29.2.1).

Table 29-3. Tested Chipsets

Chipset
Manufacturer

Chipset Model Windows 98 Windows 2000

3Dfx Banshee Works (very poor
performance)

-untested-

Voodoo 3000 Good performance,
poor interactivity

Good performance,
poor interactivity

Voodoo 5500 Works (good
performance)

-untested-

ATI All-In-Wonder 128 Works (poor
performance)

-untested-

Rage II 3D Works (poor
performance)

-untested-

Rage Pro 3D Works (poor
performance)

-untested-

Radeon DDR VIVO Good performance,
good interactivity

Good performance,
good interactivity

Matrox Millennium G200 Ok performance,
extremely poor
interactivity, some
drawing errors

Ok performance,
very poor
interactivity, some
drawing errors

Millennium G400 Good performance,
poor interactivity

Good performance,
poor interactivity

Millennium G450 Good performance,
very poor
interactivity

Good performance,
Very poor
interactivity

 VI

263 Reference

VI

264Reference

NVidia TNT Good performance,
good interactivity

Good performance,
good interactivity

Vanta Good performance,
good interactivity

Good performance,
good interactivity

TNT2 Good performance,
good interactivity

Good performance,
good interactivity

GeForce DDR Works (good
performance)

-untested-

GeForce 2 Works (good
performance)

-untested-

PowerVR Kyro Good performance,
good interactivity,
some drawing errors

Good performance,
good interactivity,
some drawing errors

Rendition Verite 2200 Works (poor
performance), some
drawing errors

-untested-

S3 Virge Ok performance,
good interactivity

-untested-

Trio 64 Works (poor
performance)

-untested-

Savage 4 -untested- Works (poor
performance)

SiS 6326 Works (poor
performance)

-untested-

29.3. Where to get the latest version of Blender

Since October 2002 Blender has become ‘Free Software’, with the sources available
as GNU GPL. During the final editing of this book, new websites about Blender were
being built. Check for the latest news about development http://www.blender.org
or for general news on the product Blender itself: http://www.blender3d.org

29.4. Support and Website Community

Visit http://www.blender3d.org/GameKit/ where you will find updated support files
and a discussion forum where you can post questions and meet with other readers
of this book.

For more general feedback on Blender, the excellent independent user site http:/
www.elysiun.com/ offers a wealth of links to galleries, tutorials and forums on many
different topics. Elysiun is visited by 100s of Blender users each day.

 VI

265 Reference

VI

266Reference

 VI

265 Reference

VI

266Reference

Glossary

A-Z
Active

Blender makes a distinction between selected and active. Only one Object or
item can be active at any given time, for example to allow visualization of data in
buttons.

See Also: Selected.

Actuator
A LogicBrick that acts like a muscle of a lifeform. It can move the object, or also
make a sound. See Section 27.3.

See Also: LogicBrick, Sensor, Controller.

Alpha
 The alpha value in an image denotes opacity, used for blending and antialiasing.

Anti-aliasing
An algorithm designed to reduce the stair-stepping artifacts that result from
drawing graphic primitives on a raster grid.

Back-buffer
Blender uses two buffers in which it draws the interface. This double-buffering
system allows one buffer to be displayed, while drawing occurs on the back-buffer.
For some applications in Blender the back-buffer is used to store color-coded
selection information.

Bevel
Beveling removes sharp edges from an extruded object by adding additional
material around the surrounding faces. Bevels are particularly useful for flying
logos, and animation in general, since they reflect additional light from the corners
of an object as well as from the front and sides.

Bounding box
A six-sided box drawn on the screen that represents the maximum extent of an
object.

Channel
Some DataBlocks can be linked to a series of other DataBlocks. For example, a
Material has eight channels to link Textures to. Each IpoBlock has a fixed number
of available channels. These have a name (LocX, SizeZ, enz.) which indicates how
they can be applied. When you add an IpoCurve to a channel, animation starts up
immediately.

 VI

267 Reference

VI

268Reference

Child
Objects can be linked to each other in hierarchical groups. The Parent Object in
such groups passes its transformations through to the Child Objects.

Clipping
The removal, before drawing occurs, of vertices and faces which are outside the
field of view.

Controller
A LogicBrick that acts like the brain of a lifeform. It makes decisions to activate
muscles (Actuators), either using simple logic or complex Python scripts. See
Section 27.2.

See Also: LogicBrick, Sensor, Python, Actuator.

DataBlock (or “block”)
The general name for an element in Blender‘s Object Oriented System.

Doppler effect
The Doppler effect is the change in pitch that occurs when a sound has a velocity
relative to the listener. When a sound moves towards the listener the pitch will rise.
when going away from the listener the pitch will drop. A well known example is
the sound of an ambulance passing by.

Double-buffer
Blender uses two buffers (images) to draw the interface in. The content of one
buffer is displayed, while drawing occurs on the other buffer. When drawing is
complete, the buffers are switched.

EditMode
Mode to select and transform vertices of an object. This way you change the shape
of the object itself. Hotkey: TAB.

See Also: Vertex (pl. vertices).

Extend select
Adds new selected items to the current selection (SHIFT-RMB)

Extrusion
The creation of a three-dimensional object by pushing out a two-dimensional
outline and giving it height, like a cookie-cutter. It is often used to create 3-D text.

Face
 The triangle and square polygons that form the basis for Meshes or for rendering.

FaceSelectMode
Mode to select faces on an object. Most important for texturing objects. Hotkey:
FKEY

 VI

267 Reference

VI

268Reference

Flag
A programming term for a variable that indicates a certain status.

Flat shading
A fast rendering algorithm that simply gives each facet of an object a single color.
It yields a solid representation of objects without taking a long time to render.
Pressing ZKEY switches to flat shading in Blender.

Fps
Frames per second. All animations, video, and movies are played at a certain rate.
Above ca. 15fps the human eye cannot see the single frames and is tricked into
seeing a fluid motion. In games this is used as an indicator of how fast a game
runs.

Frame
A single picture taken from an animation or video.

Gouraud shading
A rendering algorithm that provides more detail. It averages color information
from adjacent faces to create colors. It is more realistic than flat shading, but less
realistic than Phong shading or ray-tracing. The hotkey in Blender is CTRL-Z.

Graphical User Interface
The whole part of an interactive application which requests input from the user
(keyboard, mouse etc.) and displays this information to the user. Blenders GUI is
designed for a efficient modeling process in an animation company where time
equals money. Blenders whole GUI is done in OpenGL.

See Also: OpenGL.

Hierarchy
Objects can be linked to each other in hierarchical groups. The Parent Object in
such groups passes its transformations through to the Child Objects.

Ipo
 The main animation curve system. Ipo blocks can be used by Objects for
movement, and also by Materials for animated colors.

IpoCurve
 The Ipo animation curve.

Item
 The general name for a selectable element, e.g. Objects, vertices or curves.

Keyframe
A frame in a sequence that specifies all of the attributes of an object. The object
can then be changed in any way and a second keyframe defined. Blender
automatically creates a series of transition frames between the two keyframes, a
process called „tweening.“

 VI

269 Reference

VI

270Reference

Layer
A visibility flag for Objects, Scenes and 3DWindows. This is a very efficient method
for testing Object visibility.

Link
The reference from one DataBlock to another. It is a „pointer“ in programming
terminology.

Local
Each Object in Blender defines a local 3D space, bound by its location, rotation and
size. Objects themselves reside in the global 3-D space.

A DataBlock is local, when it is read from the current Blender file. Non-local blocks
(library blocks) are linked parts from other Blender files.

LogicBrick
A graphical representation of a functional unit in Blender‘s game logic. LogicBricks
can be Sensors, Controllers or Actuators.

See Also: Sensor, Controller, Actuator.

Mapping
The relationship between a Material and a Texture is called the ‚mapping‘. This
relationship is two-sided. First, the information that is passed on to the Texture
must be specified. Then the effect of the Texture on the Material is specified.

Mipmap
Process to filter and speed up the display of textures.

ObData block
The first and most important DataBlock linked by an Object. This block defines the
Object type, e.g. Mesh or Curve or Lamp.

Object
The basic 3-D information block. It contains a position, rotation, size and
transformation matrices. It can be linked to other Objects for hierarchies or
deformation. Objects can be „empty“ (just an axis) or have a link to ObData, the
actual 3-D information: Mesh, Curve, Lattice, Lamp, etc.

OpenGL
OpenGL is a programming interface mainly for 3D applications. It renders 3-
D objects to the screen, providing the same set of instructions on different
computers and graphics adapters. Blenders whole interface and 3-D output in the
real-time and interactive 3-D graphic is done by OpenGL.

 VI

269 Reference

VI

270Reference

Parent
An object that is linked to another object, the parent is linked to a child in a parent-
child relationship. A parent object‘s coordinates become the center of the world for
any of its child objects.

Perspective view
In a perspective view, the further an object is from the viewer, the smaller it
appears. See orthographic view.

Pivot
A point that normally lies at an object‘s geometric center. An object‘s position and
rotation are calculated in relation to its pivot-point. However, an object can be
moved off its center point, allowing it to rotate around a point that lies outside the
object.

Pixel
A single dot of light on the computer screen; the smallest unit of a computer
graphic. Short for „picture element.“

Plug-In
A piece of (C-)code loadable during runtime. This way it is possible to extend the
functionality of Blender without a need for recompiling. The Blender plugin for
showing 3D content in other applications is such a piece of code.

Python
The scripting language integrated into Blender. Python (http://www.python.org/) is
an interpreted, interactive, object-oriented programming language.

Render
To create a two-dimensional representation of an object based on its shape and
surface properties (i.e. a picture for print or to display on the monitor).

Rigid Body
Option for dynamic objects in Blender which causes the game engine to take the
shape of the body into account. This can be used to create rolling spheres for
example.

Selected
Blender makes a distinction between selected and active objects. Any number
of objects can be selected at once. Almost all key commands have an effect on
selected objects. Selecting is done with the right mouse button.

See Also: Active, Selected, Extend select.

 VI

271 Reference

VI

272Reference

Sensor
A LogicBrick that acts like a sense of a lifeform. It reacts to touch, vision, collision
etc. See Section 27.1.

See Also: LogicBrick, Controller, Actuator.

Single User
DataBlocks with only one user.

Smoothing
A rendering procedure that performs vertex-normal interpolation across a face
before lighting calculations begin. The individual facets are then no longer visible.

Transform
Change a location, rotation, or size. Usually applied to Objects or vertices.

Transparency
A surface property that determines how much light passes through an object
without being altered.

See Also: Alpha.

User
When one DataBlock references another DataBlock, it has a user.

Vertex (pl. vertices)
The general name for a 3-D or 2-D point. Besides an X,Y,Z coordinate, a vertex can
have color, a normal vector and a selection flag. Also used as controlling points or
handles on curves.

Vertex array
A special and fast way to display 3-D on the screen using the hardware graphic
acceleration. However, some OpenGL drivers or hardware doesn‘t support this, so
it can be switched off in the InfoWindow.

Wireframe
A representation of a three-dimensional object that only shows the lines of its
contours, hence the name „wireframe.“

X, Y, Z axes
The three axes of the world‘s three-dimensional coordinate system. In the
FrontView, the X axis is an imaginary horizontal line running from left to right; the
Z axis is a vertical line; and Y axis is a line that comes out of the screen toward you.
In general, any movement parallel to one of these axes is said to be movement
along that axis.

 VI

271 Reference

VI

272Reference

X, Y, and Z coordinates
The X coordinate of an object is measured by drawing a line that is perpendicular
to the X axis, through its centerpoint. The distance from where that line intersects
the X axis to the zero point of the X axis is the object‘s X coordinate. The Y and Z
coordinates are measured in a similar manner.

Z-buffer
For a Z-buffer image, each pixel is associated with a Z-value, derived from the
distance in ‚eye space‘ from the Camera. Before each pixel of a polygon is drawn,
the existing Z-buffer value is compared to the Z-value of the polygon at that point.
It is a common and fast visible-surface algorithm.

Index
2-D, 7

3-D, 8

3-D navigating, 27

3DCursor, 103

3DHeader, 103

3DWindow, 19, 32, 103

action, 88, 90

Action Actuator, 96

active, 28

Actor, 36, 135

Actuator, 136, 153

Action, 153
Camera, 158
Constraint, 155
Edit Object, 160
Ipo, 156
Message, 165
Motion, 153
Property, 159
Random, 163
Scene, 162

 VI

273 Reference

VI

274Reference

Sound, 158
Add Object, Fehler! Textmarke nicht definiert.

Always, 144

Always Sensor, 51

AND Controller, 51

Anim, 127

animated textures, Fehler! Textmarke nicht definiert.

animation, 42, 50, 67, 92

Anisotropic, 136

armature, 87

AutoPack, 130

Autostart, Fehler! Textmarke nicht definiert.

Axes, 103

axis, 7

Blender Knowledge base, 179

bone, 87

Buttons, 22

ButtonsWindow, 19

Carsten Wartmann, 63, 67, 84

center of rotation, 30

child, 15

Collision Sensor

Property, 147
Collision Sensor, 54

Collision Sensor, 147

Command line options, 133

Community, 179

Controllers, 136, 151

AND, 151
Expression, 152
OR, 152
Standard Methods, 172

copy, 28

Damp, 136

Daniel Dunbar, 174

debug, 51, Fehler! Textmarke nicht definiert.

deformation, 90

deformation groups, 90
design style, 143

 VI

273 Reference

VI

274Reference

Do Fh, 135

Download, 179

Dynamic, 36, 135

Edit Object Actuator, 54

EditButtons, 112

EditMode, 30

Examples

Expressions, 141
Expressions, 140

face, 11

Face modes, 128

FaceSelectMode, 33

fake users, 92

Fh Damp, 138

Fh Dist, 138

Fh Force, 138

Fh Norm, 138

file formats, 129

File types, 21

FileWindow, 20

FlyMode, 64

Form, 136

forward kinematics, 92

Framerate, Fehler! Textmarke nicht definiert.

FrameSlider, Fehler! Textmarke nicht definiert.

Freid Lachnowicz, 49, 84

Friction, 138

game engine, 15, 36, 132

game logic, 96

GameKeys Module, 171

GameLogic Module, 169

GameMenu, 132

GameObjects

standard methods, 172
Ghost, 135

goal, 17

Grab mode, 30

Graphic card, 174

 VI

275 Reference

VI

276Reference

gravity, 140

grid, 103

grid icon, Fehler! Textmarke nicht definiert.

hierarchies, 15

image, 11

ImageSelectWindow, 33

ImageWindow, 33, 126

immersive, 17

InfoWindow, 20, 133

InfoWindow options, 133

installation, 19, 174

Ipo Actuator, 51

IpoWindow, 50, 108

IRC, 180

Joeri Kassenaar, 97

key frame, 42

Keyboard, 145

Keyboard Sensor, 50

Lamp

types, 139
Lamps, 139

Layers, 103, 104

license agreement, 174

lights, 14, 139

line, 8

link, 28

linked copy, 29

loading, 20

lock icon, 127

LogicBrick, 37

collapse, 38
LogicBricks, 144

Standard Methods, 171
Manual, 180

Mapping, 126

Martin Strubel, 71

Mass, 135

material, 11, 137, 138

 VI

275 Reference

VI

276Reference

MenuButton, 33

Mesh, 10

Message, 70

body, 69
subject, 70

Message Actuator, 54

Message Sensor, 151

Michael Kauppi, 7

Motion Actuator, 50

Motion blending, 96

mouse, 19

Mouse Sensor, 146

mousebutton

left, 20
middle, 20
right, 20

multiple actions, 92

Near Sensor, 148

No sound, 133

NumberMenu, 30

OpenGL, 139, 174

orthogonal, 14

Pack Data, 129

Paint/FaceButtons, 127

parent, 15

parenting, 88

performance, 143

perspective, 14

physics, 135, 139

point, 8, 9

polygon, 8

PoseMode, 90

primitives, 10

Profiling, Fehler! Textmarke nicht definiert.

Properties, 137

Property, 51

types, 137
Property Actuator, 51

 VI

277 Reference

VI

278Reference

Property Sensor, 149

Pulse, 144

mode, 145
pulse mode, 53

Python, 16, 70, Fehler! Textmarke nicht definiert., 167, 168

Python methods

Mouse Movement, 146
Python methods

Property Actuator, 159
Python Controller, 152

Python methods

AddObject Actuator, 160
Collision Sensor, 147
Constraint Actuator, 155
Ipo Actuator, 157
Message Actuator, 166
Message Sensor, 151
Motion Actuator, 154
Mouse Buttons, 146
Near Sensor, 148
Property Sensor, 149
Python Controller, 152
Radar Sensor, 149
Random Actuator, 165
Random Sensor, 150
Ray Sensor, 151
ReplaceMesh Actuator, 161
 Sensor, 145
SetCamera Actuator, 163
SetScene Actuator, 162
Sound Actuator, 159
Touch Sensor, 147
TrackTo Actuator, 161

Python modules, 169

quad, 10

Radar Sensor, 148

Randall Rickert, 77

Random Sensor, 150

 VI

277 Reference

VI

278Reference

Rasterizer Module, 170

Ray Sensor, 150

Realtime Materials, 124

RealtimeButtons, 36, 134

Reevan McKay, 1, 87

Replace Mesh, 54

Resources, 129

Restitute, 138

Rigid Body, Fehler! Textmarke nicht definiert.

Rot Fh, 135

Rotation mode, 30

RotDamp, 136

saving, 20

Scaling mode, 30

Screens, 26

Selecting, 28

Sensors, 136, 144

Standard Methods, 171
Size, 135

skeleton, 87

skinning, 90

sound, 46

disable, 134
SoundButtons, 46, 142

SoundWindow, 123

Special menu

FaceSelectMode, 127
Specularity, 138

Support, 179

Text, 55

texture, 11, 33

Texture Paint, 125

Toolbox, 20

Touch Sensor, 147

toy, 17

Transformations, 14

triangle, 8, 10

undo, 21

 VI

279 Reference

VI

280Reference

unwrap, 12

user, 29

UserButton, 29

UV mapping, 12

UV coordinates, 12

UV Editor, 126

vertex groups, 89

Vertex Paint, 124

Vertexarrays, Fehler! Textmarke nicht definiert., Fehler! Textmarke nicht

definiert.

ViewButtons, 103

views, 12

W.P. van Overbruggen, 56, 97

Website, 179

weight editing, 91

weight painting, 91

Window, 22

active, 33
edge, 22
layout, 32
types, 24

WindowType, 103

wire, 50

WorldButtons, 122, 140

 VI

279 Reference

VI

280Reference

 VI

281 Reference

VI

282Reference

 VI

281 Reference

VI

282Reference

